Skip to main content

Advertisement

Log in

Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastatic prostate and breast cancers display a predilection for the skeleton. The high incidence of skeletal metastasis may be a reflection of favorable reciprocal interactions between the bone microenvironment and disseminated cancer cells. Here we show that bone-metastatic PC3-ML prostate cancer cells and MDA-231 breast cancer cells—when co-cultured with human osteoblasts—down-regulate the increase in cytosolic free calcium (Ca2+) induced by agonist stimulation. This osteoblast promoted alteration of Ca2+ signaling develops and reverts in a time-dependent manner. Most importantly, the Ca2+ responses of cancer cells lacking bone metastatic potential are not affected by osteoblasts. The limited increase in cytosolic Ca2+ observed in bone-metastatic cells does not result from depleted intracellular Ca2+ stores but rather a decreased entry of Ca2+ from the extracellular space. Interestingly, the inhibition of histone deacetylase in cancer cells replicates the changes in Ca2+ signaling induced by osteoblasts, suggesting the participation of epigenetic mechanisms. Finally, cancer cells harvested from skeletal metastases induced in mice showed Ca2+ responses identical to cells co-cultured with osteoblasts. However, Ca2+ signaling in cancer cells recovered from metastases to soft-tissues was not affected, emphasizing the role of the bone microenvironment in regulating the functional behavior of bone-metastatic cells. We propose that osteoblasts protect selected malignant phenotypes from cell death caused by an excessive increase in cytosolic Ca2+, thereby facilitating their progression into macroscopic skeletal metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  2. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis: what is special about bone? Cancer Metastasis Rev 27:41–55

    Article  PubMed  Google Scholar 

  3. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  4. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  5. Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043

    Article  PubMed  CAS  Google Scholar 

  6. Berger CE, Rathod H, Gillespie JI, Horrocks BR, Datta HK (2001) Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J Bone Mineral Res 16:2092–2102

    Article  CAS  Google Scholar 

  7. Skryma R et al (2000) Store depletion and store-operated Ca2+ current in human prostate cancer LNCaP cells: involvement in apoptosis. J Physiol 527.1:71–83

    Article  Google Scholar 

  8. Prevarskaya N, Skryma R, Shuba Y (2004) Ca2+ homeostasis in apoptotic resistance of prostate cancer cells. Biochem Biophys Res Commun 322:1326–1335

    Article  PubMed  CAS  Google Scholar 

  9. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375

    Article  PubMed  CAS  Google Scholar 

  10. Russell MR, Jamieson WL, Dolloff NG, Fatatis A (2009) The alpha-receptor for platelet-derived growth factor as a target for antibody-mediated inhibition of skeletal metastases from prostate cancer cells. Oncogene 28:412–421

    Article  PubMed  CAS  Google Scholar 

  11. Chambers AF, Groom AC, Macdonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 8:563–572

    Article  CAS  Google Scholar 

  12. Erb L, Liao Z, Seye CI, Weisman GA (2006) P2 receptors: intracellular signaling. Pflugers Arch 452:552–562

    Article  PubMed  CAS  Google Scholar 

  13. Vanoverberghe K, Mariot P, Vanden Abeele F, Delcourt P, Parys JB, Prevarskaya N (2003) Mechanisms of ATP-induced calcium signaling and growth arrest in human prostate cancer cells. Cell Calcium 34:75–85

    Article  PubMed  CAS  Google Scholar 

  14. Ichikawa J, Gemba H (2009) Cell density-dependent changes in intracellular Ca2+ mobilization via the P2Y(2) receptor in rat bone marrow stromal cells. J Physiol 219:372–381

    CAS  Google Scholar 

  15. Nemeth JA, Harb JF, Barroso U Jr, He Z, Grignon DJ, Cher ML (1999) Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res 59:1987–1993

    PubMed  CAS  Google Scholar 

  16. Mastro AM et al (2004) Breast cancer cells induce osteoblast apoptosis: a possible contributor to bone degradation. J Cell Biochem 91:265–267

    Article  PubMed  CAS  Google Scholar 

  17. Vantyghem SA et al (2005) A new model for lymphatic metastasis: development of a variant of the MDA-MB-468 human breast cancer cell line that aggressively metastasizes to lymph nodes. Clin Exp Metastasis 22:351–361

    Article  PubMed  CAS  Google Scholar 

  18. Van der Pluijm G et al (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65:7682–7690

    PubMed  Google Scholar 

  19. Buijs JT, van der Pluijm G (2009) Osteotropic cancers: from primary tumor to bone. Cancer Lett 273:177–193

    Article  PubMed  CAS  Google Scholar 

  20. Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308:1472–1477

    Article  PubMed  CAS  Google Scholar 

  21. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106:419–427

    Article  PubMed  CAS  Google Scholar 

  22. Bianco P, Riminucci M, Gronthos S, Gheron Robey P (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192

    Article  PubMed  CAS  Google Scholar 

  23. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek A, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  PubMed  CAS  Google Scholar 

  24. Pinski J, Parikh A, Bova GS, Isaacs JT (2001) Therapeutic implications of enhanced G(0)/G(1) checkpoint control induced by coculture of prostate cancer cells with osteoblasts. Cancer Res 61:6372–6376

    PubMed  CAS  Google Scholar 

  25. Bossy-Wetzel E, Green DR (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Bio Chem 274:17484–17490

    Article  CAS  Google Scholar 

  26. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  27. Hu M, Polyak K (2008) Molecular characterisation of the tumour microenvironment in breast cancer. Eur J Cancer 44:2760–2765

    Article  PubMed  CAS  Google Scholar 

  28. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu ZY, Costes SV, Cho EH, Lockett S, Khanna C, Chambers AF, Green JE (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250

    Article  PubMed  CAS  Google Scholar 

  29. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  PubMed  CAS  Google Scholar 

  30. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  PubMed  CAS  Google Scholar 

  31. Ateeq B, Unterberger A, Szyf M, Rabbani SA (2008) Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10:266–278

    PubMed  CAS  Google Scholar 

  32. Szyf M (2008) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    Article  CAS  Google Scholar 

  33. Bansal G, Druey KM, Xie Z (2007) R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther 116:473–495

    Article  PubMed  CAS  Google Scholar 

  34. Fatatis A, Caporaso R, Iannotti E, Bassi A, Di Renzo G, Annunziato L (1994) Relationship between time of activation of phospholipase C-linked plasma membrane receptors and reloading of intracellular Ca2+ stores in LAN-1 human neuroblastoma cells. J Biol Chem 269:18021–18027

    PubMed  CAS  Google Scholar 

  35. Grimaldi M (2006) Astrocytes refill intracellular Ca2+ stores in the absence of cytoplasmic [Ca2+] elevation: a functional rather than a structural ability. J Neurosci Res 84:1738–1749

    Article  PubMed  CAS  Google Scholar 

  36. Malli R, Frieden M, Hunkova M, Trenker M, Graier WF (2007) Ca2+ refilling of the endoplasmic reticulum is largely preserved albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 41:63–76

    Article  PubMed  CAS  Google Scholar 

  37. Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530

    Article  PubMed  CAS  Google Scholar 

  38. Darby PJ, Kwan CY, Daniel EE (1993) Use of calcium pump inhibitors in the study of calcium regulation in smooth muscle. Biol Signals 2:293–304

    Article  PubMed  CAS  Google Scholar 

  39. Lipskaia L, Hulot JS, Lompré AM (2009) Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflugers Arch 457:673–685

    Article  PubMed  CAS  Google Scholar 

  40. Parekh AB, Penner R (1997) Store-operated calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  41. Parekh AB, Putney JW (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  PubMed  CAS  Google Scholar 

  42. Dolloff NG, Russell MR, Loizos N, Fatatis A (2007) Human bone marrow activates the Akt pathway in metastatic prostate cells through transactivation of the alpha-platelet-derived growth factor receptor. Cancer Res 67:555–562

    Article  PubMed  CAS  Google Scholar 

  43. Hajnóczky G et al (2006) Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell calcium 40:553–560

    Article  PubMed  CAS  Google Scholar 

  44. Tombal B, Weeraratna AT, Denmeade SR, Isaacs JT (2000) Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 43:303–317

    Article  PubMed  CAS  Google Scholar 

  45. Yang GS, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15:124–134

    Article  PubMed  CAS  Google Scholar 

  46. Thebault HS, Flourakis M, Vanoverberghe K, Vandermoere K, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N (2006) Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66:2038–2047

    Article  PubMed  CAS  Google Scholar 

  47. Wang M, Stearns ME (1991) Isolation and characterization of PC-3 human-prostatic tumor sublines which preferentially metastasize to select organs in SCID mice. Differentiation 48:115–125

    Article  PubMed  CAS  Google Scholar 

  48. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95:14500–14505

    Article  PubMed  CAS  Google Scholar 

  49. Fatatis A, Miller RJ (1997) Platelet-derived growth factor (PDGF)-induced Ca2+ signaling in the CG4 oligodendroglial cell line and in transformed oligodendrocytes expressing the beta-PDGF receptor. J Biol Chem 272:4351–4358

    Article  PubMed  CAS  Google Scholar 

  50. Davis PK, Ho A, Dowdy SF (2001) Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques 30:1322–1331

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the W. W. Smith Charitable Trust Foundation and NIH (grant GM067892 to A.F.). The authors wish to thank Dr. Olimpia Meucci for critically reading the manuscript, Whitney Jamieson and Mike Russell in Fatatis laboratory for cancer cell inoculation and members of Meucci laboratory for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fatatis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 369 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambrosio, J., Fatatis, A. Osteoblasts modulate Ca2+ signaling in bone-metastatic prostate and breast cancer cells. Clin Exp Metastasis 26, 955–964 (2009). https://doi.org/10.1007/s10585-009-9286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9286-3

Keywords

Navigation