Skip to main content

Advertisement

Log in

Lymphatic metastasis in breast cancer: importance and new insights into cellular and molecular mechanisms

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Lymph node metastasis is the main prognosis factor in a number of malignancies, including breast carcinomas. The means by which lymph node metastases arise is not fully understood, and many questions remain about their importance in the further spread of breast cancer. Nevertheless, a number of key cellular and molecular mechanisms of lymphatic metastasis have been identified. These include induction of intra- or peri-tumoral lymphangiogenesis or co-option of existing lymphatic vessels to allow tumour cells to enter the lymphatics, although it remains to be established whether this is primarily an active or passive process. Gene expression microarrays and functional studies in vitro and in vivo, together with detailed clinical observations have identified a number of molecules that can play a role in the genesis of lymph node metastases. These include the well-recognised lymphangiogenic cytokines VEGF-C and VEGF-D as well as chemokine-receptor interactions, integrins and downstream signalling pathways. This paper briefly reviews current clinical and experimental evidence for the underlying mechanisms and significance of lymphatic metastasis in breast cancer and highlights questions that still need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

1°:

Primary

2°:

Secondary

BVI:

Blood vessel invasion

CAM:

Cell adhesion molecule

DCIS:

Ductal carcinoma in situ

DFS:

Disease-free survival

ER:

Oestrogen receptor

FAK:

Focal adhesion kinase

HIF:

Hypoxia inducible factor

IGF-1R:

Insulin-like growth factor 1 receptor

IGFBP:

Insulin-like growth factor binding protein

IHC:

Immunohistochemistry

ILK:

Integrin-linked kinase

LEC:

Lymphatic endothelial cell

LN(M):

Lymph node (metastasis)

LVD:

Lymphatic vessel density

LVI:

Lymphovascular invasion

MMP:

Matrix metalloprotease

MVD:

Microvessel density

NO(S):

Nitric oxide synthase

NSAID:

Non-steroidal anti-inflammatory drug

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PAX5:

Paired box gene 5

RTK(i):

Receptor tyrosine kinase (inhibitor)

SCC(HN):

Squamous cell carcinoma (of the head and neck)

SLN:

Sentinel lymph node

TAM:

Tumour associated macrophage

uPAR:

Urokinase plasminogen activator receptor

VEGF(R):

Vascular endothelial growth factor (receptor)

References

  1. Cancer Research UK (2004) Cancer in the EU

  2. Carbone P, Jordan VC, Bonadonna G (1993) Neoplasms of the breast In: Calabresi P, Schein P (eds) Medical oncology. McGraw-Hill, Inc., New York

    Google Scholar 

  3. American Cancer Society (2005) Breast cancer facts and figures 2005–2006. American Cancer Society Inc., Atlanta

    Google Scholar 

  4. Weinberg RA (2007) Moving out: invasion and metastasis In: Weinberg RA (ed) The biology of cancer. Garland Science, Taylor and Francis Group, New York

    Google Scholar 

  5. Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81

    PubMed  CAS  Google Scholar 

  6. Hunter K (2006) Host genetics influence tumour metastasis. Nat Rev Cancer 6(2):141–146

    Article  PubMed  CAS  Google Scholar 

  7. Leong SP (2006) Paradigm shift of staging and treatment for early breast cancer in the sentinel lymph node era. Breast J 12(5 Suppl 2):S128–S133

    Article  PubMed  Google Scholar 

  8. Carlson RW, Anderson BO, Bensinger W et al (2000) NCCN practice guidelines for breast cancer. Oncology (Williston Park) 14(11A):33–49

    CAS  Google Scholar 

  9. Goldhirsch A, Glick JH, Gelber RD et al (2001) Meeting highlights: international consensus panel on the treatment of primary breast cancer. Seventh international conference on adjuvant therapy of primary breast cancer. J Clin Oncol 19(18):3817–3827

    PubMed  CAS  Google Scholar 

  10. Beahrs O, Myers M (1983) Purposes and principles of staging. Manual for staging of cancer. J. B. Lippincott Co, Philadelphia

    Google Scholar 

  11. Cabanas RM (1977) An approach for the treatment of penile carcinoma. Cancer 39(2):456–466

    Article  PubMed  CAS  Google Scholar 

  12. Konstantiniuk P, Schrenk P, Reitsamer R et al (2007) A nonrandomized follow-up comparison between standard axillary node dissection and sentinel node biopsy in breast cancer. Breast 16(5):520–526

    Google Scholar 

  13. Benson JR, della Rovere GQ (2007) Management of the axilla in women with breast cancer. Lancet Oncol 8(4):331–348

    Article  PubMed  Google Scholar 

  14. Cronin-Fenton DP, Ries LA, Clegg LX et al (2007) Rising incidence rates of breast carcinoma with micrometastatic lymph node involvement. J Natl Cancer Inst 99(13):1044–1049

    Article  PubMed  Google Scholar 

  15. Atkins CD (2004) Re: influence of the new AJCC breast cancer staging system on sentinel lymph node positivity and false-negative rates. J Natl Cancer Inst 96(21):1639; author reply 1639–1640

    PubMed  Google Scholar 

  16. Rosen PP, Saigo PE, Braun DW Jr et al (1981) Predictors of recurrence in stage I (T1N0M0) breast carcinoma. Ann Surg 193(1):15–25

    Article  PubMed  CAS  Google Scholar 

  17. Fisher B, Jeong JH, Bryant J et al (2004) Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer: long-term findings from national surgical adjuvant breast and bowel project randomised clinical trials. Lancet 364(9437):858–868

    Article  PubMed  CAS  Google Scholar 

  18. Henry NL, Hayes DF (2007) Can biology trump anatomy? Do all node-positive patients with breast cancer need chemotherapy? J Clin Oncol 25(18):2501–2503

    Article  PubMed  CAS  Google Scholar 

  19. McColl BK, Loughran SJ, Davydova N et al (2005) Mechanisms of lymphangiogenesis: targets for blocking the metastatic spread of cancer. Curr Cancer Drug Targets 5(8):561–571

    Article  PubMed  CAS  Google Scholar 

  20. Veronesi U, Marubini E, Mariani L et al (1999) The dissection of internal mammary nodes does not improve the survival of breast cancer patients. 30-year results of a randomised trial. Eur J Cancer 35(9):1320–1325

    Article  PubMed  CAS  Google Scholar 

  21. Gervasoni JE Jr, Taneja C, Chung MA et al (2000) Biologic and clinical significance of lymphadenectomy. Surg Clin North Am 80(6):1631–1673

    Article  PubMed  Google Scholar 

  22. Thiele W, Sleeman JP (2006) Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol 124(1):224–241

    Article  PubMed  CAS  Google Scholar 

  23. Arnaout-Alkarain A, Kahn HJ, Narod SA et al (2007) Significance of lymph vessel invasion identified by the endothelial lymphatic marker D2-40 in node negative breast cancer. Mod Pathol 20(2):183–191

    Article  PubMed  CAS  Google Scholar 

  24. Querzoli P, Pedriali M, Rinaldi R et al (2006) Axillary lymph node nanometastases are prognostic factors for disease-free survival and metastatic relapse in breast cancer patients. Clin Cancer Res 12(22):6696–6701

    Article  PubMed  CAS  Google Scholar 

  25. Van den Eynden GG, Van Laere SJ, Van der Auwera I et al (2007) Differential expression of hypoxia and (lymph) angiogenesis-related genes at different metastatic sites in breast cancer. Clin Exp Metastasis 24(1):13–23

    Article  PubMed  CAS  Google Scholar 

  26. Hirakawa S, Brown LF, Kodama S et al (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017

    Article  PubMed  CAS  Google Scholar 

  27. Krishnan J, Kirkin V, Steffen A et al (2003) Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 63(3):713–722

    PubMed  CAS  Google Scholar 

  28. Skobe M, Hawighorst T, Jackson DG et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198

    Article  PubMed  CAS  Google Scholar 

  29. Padera TP, Kadambi A, di Tomaso E et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296(5574):1883–1886

    Article  PubMed  CAS  Google Scholar 

  30. Roberts N, Kloos B, Cassella M et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66(5):2650–2657

    Article  PubMed  CAS  Google Scholar 

  31. Ward PM, Weiss L (1989) Metachronous seeding of lymph node metastases in rats bearing the MT-100-TC mammary carcinoma: the effect of elective lymph node dissection. Breast Cancer Res Treat 14(3):315–320

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt-Kittler O, Ragg T, Daskalakis A et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100(13):7737–7742

    Article  PubMed  CAS  Google Scholar 

  33. Woelfle U, Cloos J, Sauter G et al (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63(18):5679–5684

    PubMed  CAS  Google Scholar 

  34. Auguste P, Lemiere S, Larrieu-Lahargue F et al (2005) Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol 54(1):53–61

    Article  PubMed  Google Scholar 

  35. Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115(9):2316–2319

    Article  PubMed  CAS  Google Scholar 

  36. Maruyama K, Ii M, Cursiefen C et al (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372

    Article  PubMed  CAS  Google Scholar 

  37. Schledzewski K, Falkowski M, Moldenhauer G et al (2006) Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 209(1):67–77

    Article  PubMed  CAS  Google Scholar 

  38. He Y, Rajantie I, Ilmonen M et al (2004) Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 64(11):3737–3740

    Article  PubMed  CAS  Google Scholar 

  39. He Y, Karpanen T, Alitalo K (2004) Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta 1654(1):3–12

    PubMed  CAS  Google Scholar 

  40. Schoppmann SF, Fenzl A, Nagy K et al (2006) VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery 139(6):839–846

    Article  PubMed  Google Scholar 

  41. Fiedler U, Christian S, Koidl S et al (2006) The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors. Am J Pathol 168(3):1045–1053

    Article  PubMed  CAS  Google Scholar 

  42. Breiteneder-Geleff S, Soleiman A, Kowalski H et al (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 154(2):385–394

    PubMed  CAS  Google Scholar 

  43. Miettinen M, Lindenmayer AE, Chaubal A (1994) Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens—evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol 7(1):82–90

    PubMed  CAS  Google Scholar 

  44. Sauter B, Foedinger D, Sterniczky B et al (1998) Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem 46(2):165–176

    PubMed  CAS  Google Scholar 

  45. Van der Auwera I, Van den Eynden GG, Colpaert CG et al (2005) Tumor lymphangiogenesis in inflammatory breast carcinoma: a histomorphometric study. Clin Cancer Res 11(21):7637–7642

    Article  PubMed  CAS  Google Scholar 

  46. Bono P, Wasenius VM, Heikkila P et al (2004) High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res 10(21):7144–7149

    Article  PubMed  CAS  Google Scholar 

  47. Yamauchi C, Hasebe T, Iwasaki M et al (2007) Accurate assessment of lymph vessel tumor emboli in invasive ductal carcinoma of the breast according to tumor areas, and their prognostic significance. Hum Pathol 38(2):247–259

    Article  PubMed  Google Scholar 

  48. Yang W, Klos K, Yang Y et al (2002) ErbB2 overexpression correlates with increased expression of vascular endothelial growth factors A, C, and D in human breast carcinoma. Cancer 94(11):2855–2861

    Article  PubMed  CAS  Google Scholar 

  49. Hoar FJ, Chaudhri S, Wadley MS et al (2003) Co-expression of vascular endothelial growth factor C (VEGF-C) and c-erbB2 in human breast carcinoma. Eur J Cancer 39(12):1698–1703

    Article  PubMed  CAS  Google Scholar 

  50. Mohammed RA, Green A, El-Shikh S et al (2007) Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer 96(7):1092–1100

    Article  PubMed  CAS  Google Scholar 

  51. Nakamura Y, Yasuoka H, Tsujimoto M et al (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91(2):125–132

    Article  PubMed  CAS  Google Scholar 

  52. Nakamura Y, Yasuoka H, Tsujimoto M et al (2006) Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res 12(4):1201–1207

    Article  PubMed  CAS  Google Scholar 

  53. Koyama Y, Kaneko K, Akazawa K et al (2003) Vascular endothelial growth factor-C and vascular endothelial growth factor-d messenger RNA expression in breast cancer: association with lymph node metastasis. Clin Breast Cancer 4(5):354–360

    Article  PubMed  CAS  Google Scholar 

  54. Yavuz S, Paydas S, Disel U et al (2005) VEGF-C expression in breast cancer: clinical importance. Adv Ther 22(4):368–380

    Article  PubMed  Google Scholar 

  55. Li YS, Kaneko M, Amatya VJ et al (2006) Expression of vascular endothelial growth factor-C and its receptor in invasive micropapillary carcinoma of the breast. Pathol Int 56(5):256–261

    Article  PubMed  CAS  Google Scholar 

  56. Mylona E, Alexandrou P, Mpakali A et al (2007) Clinicopathological and prognostic significance of vascular endothelial growth factors (VEGF)-C and -D and VEGF receptor 3 in invasive breast carcinoma. Eur J Surg Oncol 33(3):294–300

    Article  PubMed  CAS  Google Scholar 

  57. Choi WW, Lewis MM, Lawson D et al (2005) Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol 18(1):143–152

    Article  PubMed  CAS  Google Scholar 

  58. Kinoshita J, Kitamura K, Kabashima A et al (2001) Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer. Breast Cancer Res Treat 66(2):159–164

    Article  PubMed  CAS  Google Scholar 

  59. Gunningham SP, Currie MJ, Han C et al (2001) VEGF-B expression in human primary breast cancers is associated with lymph node metastasis but not angiogenesis. J Pathol 193(3):325–332

    Article  PubMed  CAS  Google Scholar 

  60. Currie MJ, Hanrahan V, Gunningham SP et al (2004) Expression of vascular endothelial growth factor D is associated with hypoxia inducible factor (HIF-1alpha) and the HIF-1alpha target gene DEC1, but not lymph node metastasis in primary human breast carcinomas. J Clin Pathol 57(8):829–834

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura Y, Yasuoka H, Tsujimoto M et al (2003) Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clin Cancer Res 9(2):716–721

    PubMed  CAS  Google Scholar 

  62. Williams CS, Leek RD, Robson AM et al (2003) Absence of lymphangiogenesis and intratumoural lymph vessels in human metastatic breast cancer. J Pathol 200(2):195–206

    Article  PubMed  CAS  Google Scholar 

  63. Agarwal B, Saxena R, Morimiya A et al (2005) Lymphangiogenesis does not occur in breast cancer. Am J Surg Pathol 29(11):1449–1455

    Article  PubMed  Google Scholar 

  64. Vleugel MM, Bos R, van der Groep P et al (2004) Lack of lymphangiogenesis during breast carcinogenesis. J Clin Pathol 57(7):746–751

    Article  PubMed  CAS  Google Scholar 

  65. Van den Eynden GG, Van der Auwera I, Van Laere SJ et al (2006) Distinguishing blood and lymph vessel invasion in breast cancer: a prospective immunohistochemical study. Br J Cancer 94(11):1643–1649

    PubMed  Google Scholar 

  66. van der Schaft DW, Pauwels P, Hulsmans S et al (2007) Absence of lymphangiogenesis in ductal breast cancer at the primary tumor site. Cancer Lett 254:128–136

    Article  PubMed  CAS  Google Scholar 

  67. Watanabe O, Kinoshita J, Shimizu T et al (2005) Expression of a CD44 variant and VEGF-C and the implications for lymphatic metastasis and long-term prognosis of human breast cancer. J Exp Clin Cancer Res 24(1):75–82

    PubMed  CAS  Google Scholar 

  68. Bockhorn M, Jain RK, Munn LL (2007) Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 8(5):444–448

    Article  PubMed  CAS  Google Scholar 

  69. Wong SY, Hynes RO (2006) Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle 5(8):812–817

    PubMed  CAS  Google Scholar 

  70. Hirakawa S, Kodama S, Kunstfeld R et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099

    Article  PubMed  CAS  Google Scholar 

  71. Harrell JC, Dye WW, Allred DC et al (2006) Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res 66(18):9308–9315

    Article  PubMed  CAS  Google Scholar 

  72. Halin C, Tobler NE, Vigl B et al (2007) VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110:3158–3167

    Article  PubMed  CAS  Google Scholar 

  73. Ioachim E, Charchanti A, Briasoulis E et al (2002) Immunohistochemical expression of extracellular matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer: their prognostic value and role in tumour invasion and progression. Eur J Cancer 38(18):2362–2370

    Article  PubMed  CAS  Google Scholar 

  74. Qian CN, Berghuis B, Tsarfaty G et al (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66(21):10365–10376

    Article  PubMed  CAS  Google Scholar 

  75. Carriere V, Colisson R, Jiguet-Jiglaire C et al (2005) Cancer cells regulate lymphocyte recruitment and leukocyte–endothelium interactions in the tumor-draining lymph node. Cancer Res 65(24):11639–11648

    Article  PubMed  CAS  Google Scholar 

  76. Feng Y, Sun B, Li X et al (2007) Differentially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 103(3):319–329

    Article  PubMed  CAS  Google Scholar 

  77. Hao X, Sun B, Hu L et al (2004) Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 100(6):1110–1122

    Article  PubMed  CAS  Google Scholar 

  78. Weigelt B, Wessels LF, Bosma AJ et al (2005) No common denominator for breast cancer lymph node metastasis. Br J Cancer 93(8):924–932

    Article  PubMed  CAS  Google Scholar 

  79. Huang E, Cheng SH, Dressman H et al (2003) Gene expression predictors of breast cancer outcomes. Lancet 361(9369):1590–1596

    Article  PubMed  CAS  Google Scholar 

  80. Lee H, Lin EC, Liu L et al (2003) Gene expression profiling of tumor xenografts: in vivo analysis of organ-specific metastasis. Int J Cancer 107(4):528–534

    Article  PubMed  CAS  Google Scholar 

  81. Montel V, Huang TY, Mose E et al (2005) Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am J Pathol 166(5):1565–1579

    PubMed  CAS  Google Scholar 

  82. Hoang CD, Guillaume TJ, Engel SC et al (2005) Analysis of paired primary lung and lymph node tumor cells: a model of metastatic potential by multiple genetic programs. Cancer Detect Prev 29(6):509–517

    Article  PubMed  CAS  Google Scholar 

  83. Xi L, Lyons-Weiler J, Coello MC et al (2005) Prediction of lymph node metastasis by analysis of gene expression profiles in primary lung adenocarcinomas. Clin Cancer Res 11(11):4128–4135

    Article  PubMed  CAS  Google Scholar 

  84. O′Donnell RK, Kupferman M, Wei SJ et al (2005) Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 24(7):1244–1251

    Article  PubMed  CAS  Google Scholar 

  85. Chu JH, Sun ZY, Meng XL et al (2006) Differential metastasis-associated gene analysis of prostate carcinoma cells derived from primary tumor and spontaneous lymphatic metastasis in nude mice with orthotopic implantation of PC-3M cells. Cancer Lett 233(1):79–88

    Article  PubMed  CAS  Google Scholar 

  86. Mori Y, Kono K, Matsumoto Y et al (2004) The expression of a type II transmembrane serine protease (Seprase) in human gastric carcinoma. Oncology 67(5–6):411–419

    Article  PubMed  CAS  Google Scholar 

  87. Achen MG, Stacker SA (2006) Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 119(8):1755–1760

    Article  PubMed  CAS  Google Scholar 

  88. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  PubMed  CAS  Google Scholar 

  89. Tammela T, Petrova TV, Alitalo K (2005) Molecular lymphangiogenesis: new players. Trends Cell Biol 15(8):434–441

    Article  PubMed  CAS  Google Scholar 

  90. Cao Y (2005) Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5(9):735–743

    Article  PubMed  CAS  Google Scholar 

  91. Pepper MS (2001) Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7(3):462–468

    PubMed  CAS  Google Scholar 

  92. Van Trappen PO, Pepper MS (2002) Lymphatic dissemination of tumour cells and the formation of micrometastases. Lancet Oncol 3(1):44–52

    Article  PubMed  Google Scholar 

  93. Laakkonen P, Waltari M, Holopainen T et al (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67(2):593–599

    Article  PubMed  CAS  Google Scholar 

  94. Stacker SA, Farnsworth RH, Karnezis T et al (2007) Molecular pathways for lymphangiogenesis and their role in human disease. Novartis Found Symp 281:38–43; discussion 44–53, 208–209

    Article  PubMed  CAS  Google Scholar 

  95. Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25(4):677–694

    Article  PubMed  Google Scholar 

  96. Schoppmann SF (2005) Lymphangiogenesis, inflammation and metastasis. Anticancer Res 25(6C):4503–4511

    PubMed  CAS  Google Scholar 

  97. Wong SY, Haack H, Crowley D et al (2005) Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res 65(21):9789–9798

    Article  PubMed  CAS  Google Scholar 

  98. Hoshida T, Isaka N, Hagendoorn J et al (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66(16):8065–8075

    Article  PubMed  CAS  Google Scholar 

  99. Wirzenius M, Tammela T, Uutela M et al (2007) Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 204(6):1431–1440

    Article  PubMed  CAS  Google Scholar 

  100. Zeng Y, Opeskin K, Goad J et al (2006) Tumor-induced activation of lymphatic endothelial cells via vascular endothelial growth factor receptor-2 is critical for prostate cancer lymphatic metastasis. Cancer Res 66(19):9566–9575

    Article  PubMed  CAS  Google Scholar 

  101. He Y, Rajantie I, Pajusola K et al (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65(11):4739–4746

    Article  PubMed  CAS  Google Scholar 

  102. Karpanen T, Egeblad M, Karkkainen MJ et al (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61(5):1786–1790

    PubMed  CAS  Google Scholar 

  103. O-charoenrat P, Rhys-Evans P, Eccles SA (2001) Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer 92(3):556–568

    Article  PubMed  CAS  Google Scholar 

  104. Shayan R, Karnesis T, Achen MG et al (2007) So05 the nature of nearby lymphatics dictates whether a vascular endothelial growth factor-d (VEGF-d) induces tumor lymphatics and metastasis. ANZ J Surg 77(Suppl 1):A87

    Article  Google Scholar 

  105. Kopfstein L, Veikkola T, Djonov VG et al (2007) Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 170(4):1348–1361

    Article  PubMed  CAS  Google Scholar 

  106. Kubo H, Fujiwara T, Jussila L et al (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96(2):546–553

    PubMed  CAS  Google Scholar 

  107. Cao Y (2005) Direct role of PDGF-BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle 4(2):228–230

    PubMed  CAS  Google Scholar 

  108. Cao R, Bjorndahl MA, Gallego MI et al (2006) Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood 107(9):3531–3536

    Article  PubMed  CAS  Google Scholar 

  109. Sfiligoi C, de Luca A, Cascone I et al (2003) Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. Int J Cancer 103(4):466–474

    Article  PubMed  CAS  Google Scholar 

  110. Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67(9):4254–4263

    Article  PubMed  CAS  Google Scholar 

  111. Allan AL, George R, Vantyghem SA et al (2006) Role of the integrin-binding protein osteopontin in lymphatic metastasis of breast cancer. Am J Pathol 169(1):233–246

    Article  PubMed  CAS  Google Scholar 

  112. Vantyghem SA, Allan AL, Postenka CO et al (2005) A new model for lymphatic metastasis: development of a variant of the MDA-MB-468 human breast cancer cell line that aggressively metastasizes to lymph nodes. Clin Exp Metastasis 22(4):351–361

    Article  PubMed  CAS  Google Scholar 

  113. Qian F, Hanahan D, Weissman IL (2001) l-selectin can facilitate metastasis to lymph nodes in a transgenic mouse model of carcinogenesis. Proc Natl Acad Sci USA 98(7):3976–3981

    Article  PubMed  CAS  Google Scholar 

  114. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  CAS  Google Scholar 

  115. Cabioglu N, Yazici MS, Arun B et al (2005) CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res 11(16):5686–5693

    Article  PubMed  CAS  Google Scholar 

  116. Shields JD, Emmett MS, Dunn DB et al (2007) Chemokine-mediated migration of melanoma cells towards lymphatics—a mechanism contributing to metastasis. Oncogene 26(21):2997–3005

    Article  PubMed  CAS  Google Scholar 

  117. Shields JD, Fleury ME, Yong C et al (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538

    Article  PubMed  CAS  Google Scholar 

  118. Naoi Y, Miyoshi Y, Taguchi T et al (2007) Connexin26 expression is associated with lymphatic vessel invasion and poor prognosis in human breast cancer. Breast Cancer Res Treat 106:11–17

    Article  PubMed  CAS  Google Scholar 

  119. Makinen T, Norrmen C, Petrova TV (2007) Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci 64(15):1915–1929

    Article  PubMed  CAS  Google Scholar 

  120. Kertesz N, Krasnoperov V, Reddy R et al (2006) The soluble extracellular domain of EphB4 (sEphB4) antagonizes EphB4-EphrinB2 interaction, modulates angiogenesis, and inhibits tumor growth. Blood 107(6):2330–2338

    Article  PubMed  CAS  Google Scholar 

  121. Yang NY, Pasquale EB, Owen LB et al (2006) The EphB4 receptor-tyrosine kinase promotes the migration of melanoma cells through Rho-mediated actin cytoskeleton reorganization. J Biol Chem 281(43):32574–32586

    Article  PubMed  CAS  Google Scholar 

  122. Schoppmann SF, Birner P, Stockl J et al (2002) Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 161(3):947–956

    PubMed  CAS  Google Scholar 

  123. O-charoenrat P, Rhys-Evans P, Modjtahedi H et al (2000) Vascular endothelial growth factor family members are differentially regulated by c-erbB signaling in head and neck squamous carcinoma cells. Clin Exp Metastasis 18(2):155–161

    Article  PubMed  CAS  Google Scholar 

  124. Niki T, Iba S, Tokunou M et al (2000) Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res 6(6):2431–2439

    PubMed  CAS  Google Scholar 

  125. Tang Y, Zhang D, Fallavollita L et al (2003) Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Res 63(6):1166–1171

    PubMed  CAS  Google Scholar 

  126. Schoppmann SF, Fenzl A, Schindl M et al (2006) Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat 99(2):135–141

    Article  PubMed  CAS  Google Scholar 

  127. Katsuta M, Miyashita M, Makino H et al (2005) Correlation of hypoxia inducible factor-1alpha with lymphatic metastasis via vascular endothelial growth factor-C in human esophageal cancer. Exp Mol Pathol 78(2):123–130

    Article  PubMed  CAS  Google Scholar 

  128. Nilsson I, Shibuya M, Wennstrom S (2004) Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 299(2):476–485

    Article  PubMed  CAS  Google Scholar 

  129. Irigoyen M, Anso E, Martinez E et al (2007) Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study. Biochim Biophys Acta 1773(6):880–890

    Article  PubMed  CAS  Google Scholar 

  130. Shim H, Lau SK, Devi S et al (2006) Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: potential regulation by ligand-dependent degradation and HIF-1alpha. Biochem Biophys Res Commun 346(1):252–258

    Article  PubMed  CAS  Google Scholar 

  131. Al-Rawi MA, Watkins G, Mansel RE et al (2005) Interleukin 7 upregulates vascular endothelial growth factor D in breast cancer cells and induces lymphangiogenesis in vivo. Br J Surg 92(3):305–310

    Article  PubMed  CAS  Google Scholar 

  132. Timoshenko AV, Chakraborty C, Wagner GF et al (2006) COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. Br J Cancer 94(8):1154–1163

    Article  PubMed  CAS  Google Scholar 

  133. Brader S, Eccles SA (2004) Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori 90(1):2–8

    PubMed  CAS  Google Scholar 

  134. Raynaud FI, Eccles S, Clarke PA et al (2007) Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67(12):5840–5850

    Article  PubMed  CAS  Google Scholar 

  135. Wissmann C, Detmar M (2006) Pathways targeting tumor lymphangiogenesis. Clin Cancer Res 12(23):6865–6868

    Article  PubMed  CAS  Google Scholar 

  136. Stacker SA, Hughes RA, Williams RA et al (2006) Current strategies for modulating lymphangiogenesis signalling pathways in human disease. Curr Med Chem 13(7):783–792

    Article  PubMed  CAS  Google Scholar 

  137. Fukumoto S, Morifuji M, Katakura Y et al (2005) Endostatin inhibits lymph node metastasis by a down-regulation of the vascular endothelial growth factor C expression in tumor cells. Clin Exp Metastasis 22(1):31–38

    Article  PubMed  CAS  Google Scholar 

  138. Stacker SA, Caesar C, Baldwin ME et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7(2):186–191

    Article  PubMed  CAS  Google Scholar 

  139. Roberts N, Kloos B, Cassella M et al (2006) Anti-VEGFR-3 therapy and lymph node metastasis [corrected]. Cancer Res 66(5):2650–2657

    Article  PubMed  CAS  Google Scholar 

  140. Peifer C, Krasowski A, Hammerle N et al (2006) Profile and molecular modeling of 3-(indole-3-yl)-4-(3,4,5-trimethoxyphenyl)-1 H-pyrrole-2,5-dione (1) as a highly selective VEGF-R2/3 inhibitor. J Med Chem 49(25):7549–7553

    Article  PubMed  CAS  Google Scholar 

  141. Barnes NL, Warnberg F, Farnie G et al (2007) Cyclooxygenase-2 inhibition: effects on tumour growth, cell cycling and lymphangiogenesis in a xenograft model of breast cancer. Br J Cancer 96(4):575–582

    Article  PubMed  CAS  Google Scholar 

  142. Sauter A, Kloft C, Gronau S et al (2007) Pharmacokinetics, immunogenicity and safety of bivatuzumab mertansine, a novel CD44v6-targeting immunoconjugate, in patients with squamous cell carcinoma of the head and neck. Int J Oncol 30(4):927–935

    PubMed  CAS  Google Scholar 

  143. Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66(21):10233–10237

    Article  PubMed  Google Scholar 

  144. Nakamura ES, Koizumi K, Kobayashi M et al (2004) Inhibition of lymphangiogenesis-related properties of murine lymphatic endothelial cells and lymph node metastasis of lung cancer by the matrix metalloproteinase inhibitor MMI270. Cancer Sci 95(1):25–31

    Article  PubMed  CAS  Google Scholar 

  145. Hagendoorn J, Padera TP, Fukumura D et al (2005) Molecular regulation of microlymphatic formation and function: role of nitric oxide. Trends Cardiovasc Med 15(5):169–173

    Article  PubMed  CAS  Google Scholar 

  146. Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6(7):521–534

    Article  PubMed  CAS  Google Scholar 

  147. Kumar SR, Singh J, Xia G et al (2006) Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Am J Pathol 169(1):279–293

    Article  PubMed  CAS  Google Scholar 

  148. Giles R, Loberg RD (2006) Can we target the chemokine network for cancer therapeutics? Curr Cancer Drug Targets 6(8):659–670

    Article  PubMed  CAS  Google Scholar 

  149. Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79(4):639–651

    Article  PubMed  CAS  Google Scholar 

  150. Sanderson S, Valenti M, Gowan S et al (2006) Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther 5(3):522–532

    Article  PubMed  CAS  Google Scholar 

  151. Kobayashi S, Kishimoto T, Kamata S et al (2007) Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 98(5):726–733

    Article  PubMed  CAS  Google Scholar 

  152. Zhang L, Giraudo E, Hoffman JA et al (2006) Lymphatic zip codes in premalignant lesions and tumors. Cancer Res 66(11):5696–5706

    Article  PubMed  CAS  Google Scholar 

  153. Whitehurst B, Flister MJ, Bagaitkar J et al (2007) Anti-VEGF-A therapy reduces lymphatic vessel density and expression of VEGFR-3 in an orthotopic breast tumor model. Int J Cancer 121:2181

    Article  PubMed  CAS  Google Scholar 

  154. Pick E, Kluger Y, Giltnane JM et al (2007) High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 67(7):2932–2937

    Article  PubMed  CAS  Google Scholar 

  155. Eccles SA (2005) Targeting key steps in metastatic tumour progression. Curr Opin Genet Dev 15(1):77–86

    Article  PubMed  CAS  Google Scholar 

  156. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369(9574):1742–1757

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the European Union Sixth Framework Program (MetaBre—LSHC-CT-2004-50304 and BRECOSM—LSHC-2004-50322), from the Cancer Research UK [CRUK] programme grant numbers CA309/A2187 and C309/A8274 (SE), from the Deutsche Forschungsgemeinschaft under the auspices of SPP 1190 “The tumour-vessel interface” and from the BMBF NGFN2 CancerNet Programme (JPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Eccles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eccles, S., Paon, L. & Sleeman, J. Lymphatic metastasis in breast cancer: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis 24, 619–636 (2007). https://doi.org/10.1007/s10585-007-9123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9123-5

Keywords

Navigation