Skip to main content

Advertisement

Log in

Differential expression of hypoxia and (lymph)angiogenesis-related genes at different metastatic sites in breast cancer

  • Original Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Introduction

Breast cancer can metastasize via lymphatic and hematogenous pathways. Hypoxia and (lymph)angiogenesis are closely related processes that play a pivotal role in the tumor progression and metastasis. The aim of this study was to compare expression of hypoxia and (lymph)angiogenesis-related genes between primary breast tumors and metastases in different tissues.

Materials and methods

A gene list of 269 hypoxia and (lymph)angiogenesis-related genes was composed and validated using Onto-Express, Pathway-express and Ingenuity software. The expression of these genes was compared in microarray data of 62 samples of primary tumors and metastases of 31 patients with breast cancer retrieved from Gene Expression Omnibus. Similarity between samples was investigated using unsupervised hierarchical clustering analysis, principal component analysis and permutation testing. Differential gene expression between primary tumors and metastases and between metastases from different organs was analyzed using Kruskall–Wallis and Mann–Whitney statistics.

Results

Unsupervised hierarchical cluster analysis demonstrated that hypoxia and (lymph)angiogenesis-related gene expression was more similar between samples from the same patient, than between samples from the same organ. Principal component analysis indicated that 22.7% and 7.0% of the total variation in the gene list was respectively patient and organ related. When differences in gene expression were studied between different organs, liver metastases seemed to differ most from the other secondary sites. Some of the best characterized molecules differentially expressed were VEGFA, PDGFRB, FGF4, TIMP1, TGFB-R1 and collagen 18A1 (precursor of endostatin). To confirm the results of these experiments at the protein level, immunohistochemical experiments were performed with antibodies for VEGFA and MMP-2.

Conclusions

Our results suggest that hypoxia and (lymph)angiogenesis-related gene expression is more dependent on the characteristics of the primary tumor than on the characteristics of the organs that bear the metastasis. However, when different organs are compared, the expression in liver metastases differs most from other metastatic sites and primary tumors, possibly due to organ-specific angiogenic and lymphangiogenic responses to metastasis-related hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bos R, van der Groep P, Greijer AE et al (2003) Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97(6):1573–1581

    Article  PubMed  Google Scholar 

  2. Chia SK, Wykoff CC, Watson PH et al (2001) Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. J Clin Oncol 19(16):3660–3668

    PubMed  CAS  Google Scholar 

  3. Colpaert CG, Vermeulen PB, Fox SB et al (2003) The presence of a fibrotic focus in invasive breast carcinoma correlates with the expression of carbonic anhydrase IX and is a marker of hypoxia and poor prognosis. Breast Cancer Res Treat 81(2):137–147

    Article  PubMed  CAS  Google Scholar 

  4. Dery MA, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37(3):535–540

    Article  PubMed  CAS  Google Scholar 

  5. Fox SB, Leek RD, Smith K et al (1994) Tumor angiogenesis in node-negative breast carcinomas–relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 29(1):109–116

    Article  PubMed  CAS  Google Scholar 

  6. Gasparini G, Weidner N, Bevilacqua P et al (1994) Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12(3):454–466

    PubMed  CAS  Google Scholar 

  7. Horak ER, Leek R, Klenk N et al (1992) Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340(8828):1120–1124

    Article  PubMed  CAS  Google Scholar 

  8. Linderholm B, Grankvist K, Wilking N et al (2000) Correlation of vascular endothelial growth factor content with recurrences, survival, and first relapse site in primary node-positive breast carcinoma after adjuvant treatment. J Clin Oncol 18(7):1423–1431

    PubMed  CAS  Google Scholar 

  9. Schindl M, Schoppmann SF, Samonigg H et al (2002) Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res 8(6):1831–1837

    PubMed  CAS  Google Scholar 

  10. Weidner N, Semple JP, Welch WR et al (1991) Tumor angiogenesis and metastasis–correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8

    Article  PubMed  CAS  Google Scholar 

  11. Skobe M, Hawighorst T, Jackson DG et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura Y, Yasuoka H, Tsujimoto M et al (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91(2):125–132

    Article  PubMed  CAS  Google Scholar 

  13. Bono P, Wasenius VM, Heikkila P et al (2004) High LYVE-1-positive lymphatic vessel numbers are associated with poor outcome in breast cancer. Clin Cancer Res 10(21):7144–7149

    Article  PubMed  CAS  Google Scholar 

  14. Van den Eynden GG, Van der Auwera I, Van Laere SJ et al (2005) Angiogenesis and hypoxia in lymph node metastases is predicted by the angiogenesis and hypoxia in the primary tumour in patients with breast cancer. Br J Cancer 93(10):1128–1136

    Article  PubMed  CAS  Google Scholar 

  15. Stessels F, Van den Eynden G, Van der Auwera I et al (2004) Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia. Br J Cancer 90(7):1429–1436

    Article  PubMed  CAS  Google Scholar 

  16. Colpaert CG, Vermeulen PB, Van Beest P et al (2003) Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition. Histopathology 42(6):530–540

    Article  PubMed  CAS  Google Scholar 

  17. Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100(26):15901–15905

    Article  PubMed  CAS  Google Scholar 

  18. Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65(20):9155–9158

    Article  PubMed  CAS  Google Scholar 

  19. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom 7:96–108

    Article  CAS  Google Scholar 

  20. Oh DS, Troester MA, Usary J et al (2006) Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 24(11):1656–1664

    Article  PubMed  CAS  Google Scholar 

  21. Perreard L, Fan C, Quackenbush JF et al (2006) Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 8(2):R23

    Article  PubMed  CAS  Google Scholar 

  22. Dressman HK, Hans C, Bild A et al (2006) Gene expression profiles of multiple breast cancer phenotypes and response to neoadjuvant chemotherapy. Clin Cancer Res 12(3 Pt 1):819–826

    Article  PubMed  CAS  Google Scholar 

  23. Chi JT, Wang Z, Nuyten DS et al (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3(3):e47

    Article  PubMed  CAS  Google Scholar 

  24. Weigelt B, Wessels LF, Bosma AJ et al (2005) No common denominator for breast cancer lymph node metastasis. Br J Cancer 93(8):924–932

    Article  PubMed  CAS  Google Scholar 

  25. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  26. Grüber MP, Coldren CD, Woolum MD et al (2006) Human lung project: evaluating variance of gene expression in the human lung. Am J Respir Cell Mol Biol 35(1):65–71

    Article  PubMed  CAS  Google Scholar 

  27. Van Damme N, Demetter P, De Bock W et al (2005) Limited influences of chemotherapy on healthy and metastatic liver parenchyma. World J Gastroenterol 11(34):5322–5326

    PubMed  Google Scholar 

  28. Chi JT, Chang HY, Haraldsen G et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100(19):10623–10628

    Article  PubMed  CAS  Google Scholar 

  29. Risau W (1995) Differentiation of endothelium. FASEB J 9(10):926–933

    PubMed  CAS  Google Scholar 

  30. Augustin HG, Kozian DH, Johnson RC (1994) Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays 16(12):901–906

    Article  PubMed  CAS  Google Scholar 

  31. Cines DB, Pollak ES, Buck CA et al (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91(10):3527–3561

    PubMed  CAS  Google Scholar 

  32. Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9(6):661–668

    Article  PubMed  CAS  Google Scholar 

  33. Girard JP, Springer TA (1995) High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 16(9):449–457

    Article  PubMed  CAS  Google Scholar 

  34. Lacorre DA, Baekkevold ES, Garrido I et al (2004) Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment. Blood 103(11):4164–4172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Gert Van den Eynden is a research assistant of the Fund for Scientific Research Flanders. Steven Van Laere is a predoctoral assistant supported by a research grant of the University Hospital of Antwerp. This work was supported by Fund for Scientific Research Flanders Grants L.3.058.06N and G010004N. We thank Britta Weigelt and Lodewijk Wessels from the NKI, Amsterdam, The Netherlands for kindly providing the algorithm for the WPBPSR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Vermeulen.

Electronic supplementary material

Below are the electronic supplementary material.

10585_2006_9049_MOESM1_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van den Eynden, G.G., Van Laere, S.J., Van der Auwera, I. et al. Differential expression of hypoxia and (lymph)angiogenesis-related genes at different metastatic sites in breast cancer. Clin Exp Metastasis 24, 13–23 (2007). https://doi.org/10.1007/s10585-006-9049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9049-3

Keywords

Navigation