Skip to main content

Advertisement

Log in

Using population projections in climate change analysis

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The two leading sources of long-range population projections, the United Nations (UN) and the International Institute for Applied Systems Analysis (IIASA), currently disagree on the most likely end-of-the-century world population by over two billion people. Because climate change policy models are influenced by population uncertainty, this poses an underappreciated problem for analysts. Furthermore, long-range population projections have not been predictably stable over time and climate change policy models have not consistently used one set of population projections. This only increases the difficulty of comparing research results. Comparing the UN and IIASA population projections, the UN’s probabilistic population projections should be used with caution as they tend to understate the uncertainty in long-range population forecasts. Currently, the IIASA scenario projections are better suited to long-range climate change policy analysis. As a final recommendation, a simple demographic sub-model is proposed for use in cost-benefit climate change integrated assessment models that performs better than current alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This corresponds to the second shared socioeconomic pathway (SSP2) (cf. O’Neill et al. 2014) to be discussed later.

References

  • Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 80(343):1520–1522. doi:10.1126/science.1248676

    Article  Google Scholar 

  • Ackerman F, Munitz C (2016) A critique of climate damage modeling: carbon fertilization, adaptation, and the limits of FUND. Energy Res Soc Sci 12:62–67. doi:10.1016/j.erss.2015.11.008

    Article  Google Scholar 

  • Basten S, Yip P, Chui E (2013) Remeasuring ageing in Hong Kong SAR; or “keeping the demographic window open”. J Popul Res 30:249–264. doi:10.1007/s12546-013-9113-1

    Article  Google Scholar 

  • Billari FC, Graziani R, Melilli E (2014) Stochastic population forecasting based on combinations of expert evaluations within the Bayesian paradigm. Demography 51:1933–1954. doi:10.1007/s13524-014-0318-5

    Article  Google Scholar 

  • Bongaarts J (2016) Slow down population growth. Nature 530:409–412. doi:10.1038/530409a

    Article  Google Scholar 

  • Bongaarts J, Bulatao RA (2000) Beyond six billion: forecasting the world’s population. National Academies Press, Washington, DC

    Google Scholar 

  • Booth H (2006) Demographic forecasting: 1980 to 2005 in review. Int J Forecast 22:547–581

    Article  Google Scholar 

  • Bradshaw CJA, Brook BW (2014) Human population reduction is not a quick fix for environmental problems. Proc Natl Acad Sci. doi:10.1073/pnas.1410465111

    Google Scholar 

  • Clarke L, Jiang K, Akimoto K et al (2014) Assessing transformation pathways. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 413–510

    Google Scholar 

  • Cohen JE (1995) How many people can the earth support? WW Norton & Company, New York

    Google Scholar 

  • Flato G, Marotzke J, Abiodun B et al (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 741–866

    Google Scholar 

  • Gaffin SR, O’Neill BC (1997) Population and global warming with and without CO2 targets. Popul Environ 18:389–413

    Article  Google Scholar 

  • Gerland P, Raftery AE, Ševčíková H et al (2014) World population stabilization unlikely this century. Science 234:234–237. doi:10.1126/science.1257469

    Article  Google Scholar 

  • Hamilton C, Turton H (2002) Determinants of emissions growth in OECD countries. Energy Policy 30:63–71. doi:10.1016/S0301-4215(01)00060-X

    Article  Google Scholar 

  • Hunter LM, O’Neill BC (2014) Enhancing engagement between the population, environment, and climate research communities: the shared socio-economic pathway process. Popul Environ 35:231–242. doi:10.1007/s11111-014-0202-7

    Article  Google Scholar 

  • IPCC (2014a) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al. (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2014b) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland

  • Jones DW (1991) How urbanization affects energy-use in developing countries. Energy Policy 19:621–630. doi:10.1016/0301-4215(91)90094-5

    Article  Google Scholar 

  • KC S, Lutz W (2014a) Demographic scenarios by age, sex and education corresponding to the SSP narratives. Popul Environ 35:243–260. doi:10.1007/s11111-014-0205-4

    Article  Google Scholar 

  • KC S, Lutz W (2014b) The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob Environ Chang. doi:10.1016/j.gloenvcha.2014.06.004

    Google Scholar 

  • Krey V, Masera O, Blanford G et al (2014) Annex II: Metrics & Methodology. In: Edenhofer O, Pichs-Madruga R, Sokona Y (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1281–1328

    Google Scholar 

  • Kriegler E, O’Neill BC, Hallegatte S et al (2012) The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob Environ Chang 22:807–822. doi:10.1016/j.gloenvcha.2012.05.005

    Article  Google Scholar 

  • Lee RD (1998) Probabilistic approaches to population forecasting. In: Lutz W, Vaupel JW, Ahlburg DA (eds) Frontiers of population forecasting: supplement to population and development review. Population Council, New York, pp 156–190

    Google Scholar 

  • Liddle B (2013) Urban density and climate change: a STIRPAT analysis using city-level data. J Transp Geogr 28:22–29. doi:10.1016/j.jtrangeo.2012.10.010

    Article  Google Scholar 

  • Liddle B (2014) Impact of population, age structure, and urbanization on carbon emissions/energy consumption: evidence from macro-level, cross-country analyses. Popul Environ 35:286–304. doi:10.1007/s11111-013-0198-4

    Article  Google Scholar 

  • Lutz W, KC S (2010) Dimensions of global population projections: what do we know about future population trends and structures? Philos Trans R Soc Lond Ser B Biol Sci 365:2779–2791

    Article  Google Scholar 

  • Lutz W, Sanderson W, Scherbov S (2001) The end of world population growth. Nature 412:543–545

    Article  Google Scholar 

  • Lutz W, Butz WP, KC S et al (2014a) Population growth: peak probability. Science 346(80):561. doi:10.1126/science.346.6209.561-a

    Article  Google Scholar 

  • Lutz W, Butz WP, KC S (2014b) World population and human capital in the twenty-first century. Oxford University Press, Oxford

    Book  Google Scholar 

  • Morgan MG (2014) Use (and abuse) of expert elicitation in support of decision making for public policy. Proc Natl Acad Sci 111:7176–7184. doi:10.1073/pnas.1319946111

    Article  Google Scholar 

  • Mouratiadou I, Biewald A, Pehl M et al (2016) The impact of climate change mitigation on water demand for energy and food: an integrated analysis based on the shared socioeconomic pathways. Environ Sci Pol 64:48–58. doi:10.1016/j.envsci.2016.06.007

    Article  Google Scholar 

  • Nordhaus WD (1992a) The “DICE” model: background and structure of a Dynamic Integrated Climate-Economy model of the economics of global warming. Cowles Foundation discussion paper no. 1009

  • Nordhaus WD (1992b) Optimal greenhouse-gas reductions and tax policy in the “DICE” model

  • Nordhaus WD (1994) Managing the global commons: the economics of climate change. MIT, Cambridge

    Google Scholar 

  • Nordhaus WD (2007) Accompanying notes and documentation on development of DICE-2007 model: notes on DICE-2007.delta.v8 as of June 7, 2007

  • Nordhaus WD (2008) A question of balance: weighing the options on global warming policies. Yale University Press, New Haven

    Google Scholar 

  • Nordhaus WD, Boyer J (2000) Warming the world: economic models of global warming. MIT, Cambridge

    Google Scholar 

  • Nordhaus WD, Sztorc P (2013) DICE 2013: introduction and user’s manual

  • O’Neill BC, Dalton M, Fuchs R et al (2010) Global demographic trends and future carbon emissions. Proc Natl Acad Sci U S A 107:17521–17526. doi:10.1073/pnas.1004581107

    Article  Google Scholar 

  • O’Neill BC, Kriegler E, Riahi K et al (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Chang 122:387–400. doi:10.1007/s10584-013-0905-2

    Article  Google Scholar 

  • Popp A, Dietrich JP, Lotze-Campen H et al (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:34017. doi:10.1088/1748-9326/6/3/034017

    Article  Google Scholar 

  • Riahi K, van Vuuren DP, Kriegler E et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168. doi:10.1016/j.gloenvcha.2016.05.009

    Article  Google Scholar 

  • Romaniuk A (2010) Population forecasting: epistemological considerations. Genus 66:91–108

    Google Scholar 

  • Sanderson WC, Scherbov S (2010) Remeasuring aging. Science 329(80):1287–1288

    Article  Google Scholar 

  • Smith K (2008) The population problem. Nat Reports Clim Chang:72–74. doi:10.1038/climate.2008.44

  • Smith K (2011) We are seven billion. Nat Clim Chang 1:331–335. doi:10.1038/nclimate1235

    Article  Google Scholar 

  • United Nations (2015) World population prospects: the 2015 revision. http://esa.un.org/unpd/wpp/

  • van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rozell.

Electronic supplementary material

ESM 1

(DOCX 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozell, D. Using population projections in climate change analysis. Climatic Change 142, 521–529 (2017). https://doi.org/10.1007/s10584-017-1968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-017-1968-2

Keywords

Navigation