Skip to main content

Advertisement

Log in

Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The present study establishes a general formulation to represent the behavior and variation of an ensemble of complex climate models in terms of the global mean surface temperature response to atmospheric CO2 increase. The response parameters of this formulation provide a set of metrics that extends the conventional concept of climate sensitivity and quantifies transient temperature changes with sufficient simplicity and transparency to serve studies on climate change mitigation. Two commonly used metrics for transient and equilibrium climate sensitivity are analytically derived from the formulation, such that conventional estimates of equilibrium climate sensitivity based on standard numerical experiments for quadrupling CO2 increase are properly scaled down to the reference level of doubling CO2. The characteristics and variations of a specific ensemble of complex climate models can be simulated with a statistical model built using the principal components (PCs) of the response parameters. This approach is applied to the probabilistic assessment of temperature changes as well as to the diagnosis of the base ensemble. In current complex climate models, the ratio of transient-to-equilibrium sensitivity decreases with an increase of equilibrium sensitivity, as identified in variations associated with two specific PCs that characterize coherence between transient temperature response and properties of heat uptake by the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166

    Article  Google Scholar 

  • Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys Res Lett 39:L09712

    Google Scholar 

  • Andrews T, Gregory JM, Webb MJ (2015) The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J Clim 28:1630–1648

    Article  Google Scholar 

  • Armour KC, Bitz CM, Roe GH (2013) Time-varying climate sensitivity from regional feedbacks. J Clim 26:4518–4534

    Article  Google Scholar 

  • Caldeira K, Myhrvold NP (2013) Projections of the pace of warming following an abrupt increase in atmospheric carbon dioxide concentration. Environ Res Lett 8:034039

    Article  Google Scholar 

  • Chung E-S, Soden BJ (2015) An assessment of direct radiative forcing, radiative adjustments, and radiative feedbacks in coupled ocean–atmosphere models. J Clim 28:4152–4170

    Article  Google Scholar 

  • Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G, Fisher-Vanden K, Hourcade J-C, Krey V, Kriegler E, Löschel A, McCollum D, Paltsev S, Rose S, Shukla PR, Tavoni M, van der Zwaan BCC, van Vuuren DP (2014) Assessing transformation pathways. In: Edenhofer O et al (eds) Climate change 2014: Mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 413–510

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1029–1136

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 525–582

  • Eyring V, Bony S, Meehl GA, Senior C, Stevens B, Stouffer RJ, Taylor KE (2015) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organisation. Geosci Model Dev Discuss 8:10539–10583

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 741–866

  • Forster PM, Andrews T, Good P, Gregory JM, Jackson LS, Zelinka M (2013) Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J Geophys Res 118:1139–1150

    Google Scholar 

  • Fyfe JC et al (2016) Making sense of the early-2000s warming slowdown. Nat Clim Chang 6:224–228

    Article  Google Scholar 

  • Geoffroy O, Saint-Martin D, Olivié DJL, Voldoire A, Bellon G, Tytéca S (2013a) Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J Clim 26:1841–1857

    Article  Google Scholar 

  • Geoffroy O, Saint-Martin D, Bellon G, Voldoire A, Olivié DJL, Tytéca S (2013b) Transient climate response in a two-layer energy-balance model. Part II: Representation of the efficacy of deep-ocean heat uptake and validation for CMIP5 AOGCMs. J Clim 26:1859–1876

    Article  Google Scholar 

  • Good P, Gregory JM, Lowe JA (2011) A step-response simple climate model to reconstruct and interpret AOGCM projections. Geophys Res Lett 38:L01703

    Article  Google Scholar 

  • Gregory J, Webb M (2008) Tropospheric adjustment induces a cloud component in CO2 Forcing. J Clim 21:58–71

    Article  Google Scholar 

  • Gregory JM et al (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205

    Google Scholar 

  • Gregory JM, Andrews T, Good P (2015) The inconstancy of the transient climate response parameter under increasing CO2. Phil Trans R Soc A 373:20140417

    Article  Google Scholar 

  • Hansen J et al (2005) Efficacy of climate forcings. J Geophys Res 110:D18104

    Article  Google Scholar 

  • Hooss G, Voss R, Hasselmann K, Maier-Reimer E, Joos F (2001) A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS). Clim Dyn 18:189–202

    Article  Google Scholar 

  • Jarvis A, Li S (2011) The contribution of timescales to the temperature response of climate models. Clim Dyn 36:523–531

    Article  Google Scholar 

  • Kamae Y, Watanabe M, Ogura T, Yoshimori M, Shiogama H (2015) Rapid adjustments of cloud and hydrological cycle to increasing CO2: a Review. Curr Clim Change Rep 1:103–113

    Article  Google Scholar 

  • Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743

    Article  Google Scholar 

  • Knutti R, Rugenstein MAA (2015) Feedbacks, climate sensitivity and the limits of linear models. Phil Trans R Soc A 373:20140417

    Article  Google Scholar 

  • Knutti R, Joos F, Müller SA, Plattner G-K, Stocker TF (2005) Probabilistic climate change projections for CO2 stabilization profiles. Geophys Res Lett 32:L20707

    Article  Google Scholar 

  • Li S, Jarvis A (2009) Long run surface temperature dynamics of an A-OGCM: the HadCM3 4 × CO2 forcing experiment revisited. Clim Dyn 33:817–825

    Article  Google Scholar 

  • Li C, Storch J-S, Marotzke J (2013) Deep-ocean heat uptake and equilibrium climate response. Clim Dyn 40:1071–1086

    Article  Google Scholar 

  • Long DJ, Collins M (2013) Quantifying global climate feedbacks, responses and forcing under abrupt and gradual CO2 forcing. Clim Dyn 41:2471–2479

    Article  Google Scholar 

  • Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458:1158–1162

    Article  Google Scholar 

  • Meinshausen M, Raper SCB, Wigley TML (2011a) Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmos Chem Phys 11:1417–1456

    Article  Google Scholar 

  • Meinshausen M et al (2011b) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  Google Scholar 

  • Meraner K, Mauritsen T, Voigt A (2013) Robust increase in equilibrium climate sensitivity under global warming. Geophys Res Lett 40:5944–5948

    Article  Google Scholar 

  • Merlis TM (2015) Direct weakening of tropical circulations from masked CO2 radiative forcing. Proc Natl Acad Sci 112:13167–13171

    Article  Google Scholar 

  • Millar RJ, Otto A, Forster PM, Lowe JA, Ingram WJ, Allen MR (2015) Model structure in observational constraints on transient climate response. Clim Chang 131:199–211

    Article  Google Scholar 

  • Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718

    Article  Google Scholar 

  • Nordhaus WD (2010) Economic aspects of global warming in a post-Copenhagen environment. Proc Natl Acad Sci 107:11721–11726

    Article  Google Scholar 

  • Pincus R, Forster PM, Stevens B (2016) The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geosci Model Dev Discuss 2016:1–18

  • Raper SCB, Gregory JM, Stouffer RJ (2002) The Role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J Clim 15:124–130

    Article  Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2:248–253

    Article  Google Scholar 

  • Rose BEJ, Armour KC, Battisti DS, Feldl N, Koll DDB (2014) The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys Res Lett 41:1071–1078

    Article  Google Scholar 

  • Rugenstein MAA, Gregory JM, Schaller N, Sedláček J, Knutti R (2016) Multiannual ocean–atmosphere adjustments to radiative forcing. J Clim 29:5643–5659

    Article  Google Scholar 

  • Schaeffer M, Gohar L, Kriegler E, Lowe J, Riahi K, van Vuuren D (2015) Mid- and long-term climate projections for fragmented and delayed-action scenarios. Technol Forecast Soc Chang 90(Part A):257–268

    Article  Google Scholar 

  • Senior CA, Mitchell JFB (2000) The time-dependence of climate sensitivity. Geophys Res Lett 27:2685–2688

    Article  Google Scholar 

  • Sherwood SC, Bony S, Dufresne JL (2014) Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505:37–42

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Phil Trans R Soc A 365:2053–2075

    Article  Google Scholar 

  • van Vuuren D et al (2011) How well do integrated assessment models simulate climate change? Clim Chang 104:255–285

    Article  Google Scholar 

  • Williams KD, Ingram WJ, Gregory JM (2008) Time variation of effective climate sensitivity in GCMs. J Clim 21:5076–5090

    Article  Google Scholar 

  • Winton M, Takahashi K, Held IM (2010) Importance of ocean heat uptake efficacy to transient climate change. J Clim 23:2333–2344

    Article  Google Scholar 

  • Winton M, Griffies SM, Samuels BL, Sarmiento JL, Frölicher TL (2013) Connecting changing ocean circulation with changing climate. J Clim 26:2268–2278

    Article  Google Scholar 

  • Zelinka MD, Klein SA, Taylor KE, Andrews T, Webb MJ, Gregory JM, Forster PM (2013) Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J Clim 26:5007–5027

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Program for Risk Information on Climate Change, sponsored by Ministry of Education, Culture, Sports, Science and Technology, Japan. I acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and I thank the climate modeling groups (listed in Table S1) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Tsutsui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

ESM 2

(PDF 113 kb)

ESM 3

(PDF 26 kb)

ESM 4

(PDF 19 kb)

ESM 5

(DOCX 16 kb)

Appendix A. Relationship between IR and EB formulations

Appendix A. Relationship between IR and EB formulations

IR(n) is derived from its equivalent n-layer energy balance equations, termed EB(n), through Laplace transform (Li and Jarvis 2009). EB(2) is given by

$$ \frac{d}{dt}\left(\frac{T_S}{T_1}\right)=\left(\begin{array}{ll}-\left(\lambda +{\lambda}_1\right)/{\zeta}_S\hfill & {\lambda}_1/{\zeta}_S\hfill \\ {}{\lambda}_1/\kern-2em {\zeta}_1\hfill & -{\lambda}_1/{\zeta}_1\hfill \end{array}\right)\left(\frac{T_S}{T_1}\right)+\left(\begin{array}{l}F/{\zeta}_S\hfill \\ {}0\hfill \end{array}\right) $$
(A1)

in a matrix form, where \( {T}_1 \) is the temperature anomaly in the sub-surface layer, ζ with subscript ‘S’ and ‘1’ is the heat content of the surface and sub-surface layers, respectively, and \( {\lambda}_1 \) is the heat exchange coefficient between the two layers. Taking the Laplace transform of this equation with zero initial conditions yields

$$ \left(\begin{array}{ll}s+\left(\lambda +{\lambda}_1\right)/{\zeta}_S\hfill & -\lambda /{\zeta}_S\hfill \\ {}\kern1.8em -\kern-2em {\lambda}_1/\kern-2em {\zeta}_1\hfill & s+{\lambda}_1/{\zeta}_1\hfill \end{array}\right)\left(\begin{array}{l}{T}_S(s)\hfill \\ {}{T}_1(s)\hfill \end{array}\right)=\left(\begin{array}{l}F(s)/{\zeta}_S\hfill \\ {}0\hfill \end{array}\right) $$
(A2)

in the s domain, and solved for \( {T}_S(s) \) in a transform function form as

$$ \frac{T_S(s)}{F(s)}=\frac{\left(1/{\zeta}_S\right)\left(s+{\lambda}_1/{\zeta}_1\right)}{\left[s+\left(\lambda +{\lambda}_1\right)/{\zeta}_S\right]\left[s+{\lambda}_1/{\zeta}_1\right]-{\lambda}_1^2\left({\zeta}_S{\zeta}_1\right)}. $$
(A3)

This equation is arranged in a partial fraction expansion form

$$ \frac{T_S(S)}{F(S)}=\frac{a_1}{s-{b}_1}+\frac{a_2}{s-{b}_2}, $$
(A4)

and the comparison of the above two equations gives the following relations

$$ {a}_1+{a}_2=1/{\zeta}_S $$
(A5)
$$ -{a}_1{b}_2-{a}_2{b}_1={\lambda}_1/\left({\zeta}_S{\zeta}_1\right) $$
(A6)
$$ -{b}_1-{b}_2=\left(\lambda +{\lambda}_1\right)/{\zeta}_S+{\lambda}_1/{\zeta}_1 $$
(A7)
$$ {b}_1{b}_2=\left(\lambda {\lambda}_1\right)/\left({\zeta}_S{\zeta}_1\right). $$
(A8)

Considering that the inverse Laplace transform of equation (A4) is the impulse response function with a sum of two exponentials, equations (A5)–(A8) are transformed by substituting \( {a}_i \) and \( {b}_i \) with \( \left(1/\uplambda \right){A}_i/{\tau}_i \) and \( -1/{\tau}_i \) into

$$ {A}_1/{\tau}_1+A/{\tau}_2=\lambda /{\zeta}_S $$
(A9)
$$ {A}_1+{A}_2=1 $$
(A10)
$$ {A}_1{\tau}_1+{A}_2{\tau}_2=\left({\zeta}_S+{\zeta}_1\right)/\lambda $$
(A11)
$$ {\tau}_1{\tau}_2=\left({\zeta}_S{\zeta}_1\right)/\left(\lambda {\lambda}_1\right) $$
(A12)

Similarly, EB(3) having the third layer denoted with subscript ‘2’

$$ \left(\begin{array}{lll}s+\left(\lambda +{\lambda}_1\right)/{\zeta}_S\hfill & \kern2em -\kern-1em {\lambda}_1/\kern-2em {\zeta}_S\hfill & \kern1.3em 0\hfill \\ {}-{\lambda}_1/\kern-1.5em {\zeta}_1\hfill & s+\left({\lambda}_1+{\lambda}_2\right)/{\zeta}_1\hfill & -{\lambda}_2/{\zeta}_1\hfill \\ {}\kern3em 0\hfill & \kern2em -\kern-1em {\lambda}_2/\kern-2em {\zeta}_2\hfill & s+{\lambda}_2/{\zeta}_2\hfill \end{array}\right)\left(\begin{array}{l}{T}_S(s)\hfill \\ {}{T}_1(s)\hfill \\ {}{T}_2(s)\hfill \end{array}\right)=\left(\begin{array}{l}F(s)/{\zeta}_S\hfill \\ {}\kern1.3em 0\hfill \\ {}\kern1.3em 0\hfill \end{array}\right) $$
(A13)

is transformed into

$$ \begin{array}{c}\hfill \frac{T_S(s)}{F(s)}=\frac{1}{\zeta_S}\left[{S}^2+\left(\frac{\lambda_1+{\lambda}_2}{\zeta_1}+\frac{\lambda_2}{\zeta_2}\right)s+\frac{\lambda_1{\lambda}_2}{\zeta_1{\zeta}_2}\right]\hfill \\ {}\hfill /\left[{S}^3+\left(\frac{\lambda +{\lambda}_1}{\zeta_S}+\frac{\lambda_1+{\lambda}_2}{\zeta_1}+\frac{\lambda_2}{\zeta_2}\right){S}^2\right.\hfill \\ {}\hfill \left.+\left(\frac{\lambda {\lambda}_1+{\lambda}_1{\lambda}_2+{\lambda}_2\lambda }{\zeta_S{\zeta}_1}+\frac{\lambda_1{\lambda}_2}{\zeta_1{\zeta}_2}+\lambda {\lambda}_2+\frac{\lambda_1{\lambda}_2}{\zeta_2{\zeta}_S}\right)S+\frac{\lambda {\lambda}_1{\lambda}_2}{\zeta_S{\zeta}_1{\zeta}_2}\right].\hfill \end{array} $$
(A14)

Again, comparing this with its partial fraction expansion form

$$ \frac{T_S(s)}{F(s)}=\frac{a_1}{s-{b}_1}+\frac{a_2}{s-{b}_2}+\frac{a_3}{s-{b}_3} $$
(A15)

the following relations are obtained

$$ {a}_1+{a}_2+{a}_3=1/{\zeta}_S $$
(A16)
$$ {a}_1\left({b}_2+{b}_3\right)+{a}_2\left({b}_3+{b}_1\right)+{a}_3\left({b}_1+{b}_2\right)=\frac{1}{\zeta_S}\left(\frac{\lambda_1+{\lambda}_2}{\zeta_1}+\frac{\lambda_2}{\zeta_2}\right) $$
(A17)
$$ {a}_1{b}_2{b}_3+{a}_2{b}_3{b}_1+{a}_3{b}_1{b}_2=\frac{\lambda_1{\lambda}_2}{\zeta_S{\zeta}_1{\zeta}_2} $$
(A18)
$$ {b}_1+{b}_2+{b}_3=\frac{\lambda +{\lambda}_1}{\zeta_S}+\frac{\lambda_1+{\lambda}_2}{\zeta_1}+\frac{\lambda_2}{\zeta_2} $$
(A19)
$$ {b}_1{b}_2+{b}_2{b}_3+{b}_3{b}_1=\frac{\lambda {\lambda}_1+{\lambda}_1{\lambda}_2+{\lambda}_2\lambda }{\zeta_S{\zeta}_1}+\frac{\lambda_1{\lambda}_2}{\zeta_1{\zeta}_2}+\frac{\lambda {\lambda}_2+{\lambda}_1{\lambda}_2}{\zeta_2{\zeta}_S} $$
(A20)
$$ {b}_1{b}_2{b}_3=\frac{\lambda {\lambda}_1{\lambda}_2}{\zeta_S{\zeta}_1{\zeta}_2}. $$
(A21)

These equations are transformed with \( {A}_i \) and \( {\tau}_i \) into

$$ \frac{A_1}{\tau_1}+\frac{A_2}{\tau_2}+\frac{A_3}{\tau_3}=\frac{\lambda }{\zeta_S} $$
(A22)
$$ {A}_1{\tau}_1+{A}_2{\tau}_2+{A}_3{\tau}_3=\frac{\zeta_S+{\zeta}_1+{\zeta}_2}{\lambda } $$
(A23)
$$ {A}_1+{A}_2+{A}_3=1 $$
(A24)
$$ \frac{A_1}{\tau_1^2}+\frac{A_2}{\tau_2^2}+\frac{A_3}{\tau_3^2}=\frac{\lambda \left(\lambda +{\lambda}_1\right)}{\zeta_S^2} $$
(A25)
$$ {\tau}_1+{\tau}_2+{\tau}_3=\frac{\zeta_S+{\zeta}_1+{\zeta}_2}{\lambda }+\frac{\zeta_1+{\zeta}_2}{\lambda_1}+\frac{\zeta_2}{\lambda_2} $$
(A26)
$$ {\tau}_1{\tau}_2{\tau}_3=\frac{\zeta_S{\zeta}_1{\zeta}_2}{\lambda {\lambda}_1{\lambda}_2}. $$
(A27)

Note that \( {a}_i \) and \( {b}_i \) in the partial fraction expansion form are associated with the eigenvalues and the eigenvectors of the system of the differential equations, where \( {b}_i \) corresponds to the eigenvalues, and \( {a}_i \) corresponds to the inverse of the matrix that contains the eigenvectors in its columns. When numerical computation is applied, differential equations in a diagonalized form

$$ \frac{d\left({v}_{jk}^{-1}{T}_k\right)}{dt}=-\frac{1}{\tau_j}\left({v}_{jk}^{-1}{T}_k\right)+\left({v}_{j1}^{-1}F/{\zeta}_S\right) $$
(A28)

are efficiently integrated, where \( {v}_{jk}^{-1} \) is an element of the inverse eigenvectors matrix, and subscript k is the layer index denoting each of ‘S’ and numbers from 1 to \( n-1 \). Assuming a linear change of forcing \( \Delta F(t) \) during a time step from t to \( t+\Delta t \), the time integration is calculated as

$$ \begin{array}{c}\hfill {v}_{jk}^{-1}{T}_k\left(t+\varDelta t\right)={v}_{jk}^{-1}{T}_k(t){\mathrm{e}}^{-\varDelta t/{\tau}_j}+\left[{v}_{j1}^{-1}F(t)/{\zeta}_S\right]{\uptau}_j\left(1-{\mathrm{e}}^{-\varDelta t/{\tau}_j}\right)\hfill \\ {}\hfill +\frac{v_{j1}^{-1}\varDelta F(t)/{\zeta}_S}{\varDelta t}\left[t-{\tau}_j\left(1-{\mathrm{e}}^{-\varDelta t/{\tau}_j}\right)\right].\hfill \end{array} $$
(A29)

The heat content \( {\zeta}_k \) is converted into effective ocean depth \( {h}_k \) for reference. The conversion factor used in the present study is the product of the density of sea water (1.03 × 103 kg m−3), the specific heat of sea water (4.18 × 103 J kg−1 K−1), and the fraction of the earth surface covered by the ocean (0.71).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsutsui, J. Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models. Climatic Change 140, 287–305 (2017). https://doi.org/10.1007/s10584-016-1832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1832-9

Keywords

Navigation