Skip to main content

Advertisement

Log in

A mechanistic approach reveals non linear effects of climate warming on mussels throughout the Mediterranean sea

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

There is a dire need to forecast the ecological impacts of global climate change at scales relevant to policy and management. We used three interconnected models (climatic, biophysical and energetics) to estimate changes in growth, reproduction and mortality risk by 2050, for three commercially and ecologically important bivalves at 51 sites in the Mediterranean Sea. These results predict highly variable responses (both positive and negative) in the time to reproductive maturity and in the risk of lethality among species and sites that do not conform to simple latitudinal gradients, and which would be undetectable by methods focused only on lethal limits and/or range boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerly DD, Cornwell WK, Weiss SB, Flint LE, Flint AL (2015) A geographic mosaic of climate change impacts on terrestrial vegetation: which areas are most at risk? PLoS ONE 10, e0130629

    Article  Google Scholar 

  • Bennet NL, Severns PM, Parmesan C, Singer MC (2015) Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos 124:41–53. doi:10.1111/oik.01490

    Article  Google Scholar 

  • Bernhardt JR, Leslie HM (2013) Resilience to climate change in coastal marine ecosystems. Annu Rev Mar Sci 5:371–392. doi:10.1146/annurev-marine-121211-172411

    Article  Google Scholar 

  • Braby CE, Somero GN (2002) Following the heart: temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). J Exp Biol 209:2554–2566. doi:10.1242/jeb.02259

    Article  Google Scholar 

  • Bracken MES, Menge BA, Foley MM, Sorte CJB, Lubchenco J, Schiel DR (2012) Mussel selectivity for high-quality food drives carbon inputs into open-coast intertidal ecosystems. Mar Ecol Prog Ser 459:53–62. doi:10.3354/meps09764

    Article  Google Scholar 

  • Brown RP, Griffin S (2005) Lower selected body temperatures after food deprivation in the lizard Anolis carolinensis. J Therm Biol 30:79–83. doi:10.1016/j.jtherbio.2004.07.005

    Article  Google Scholar 

  • Buckley LB, Kingsolver JG (2012) Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu Rev Ecol Evol Syst 43:205–226. doi:10.1146/annurev-ecolsys-110411-160516

    Article  Google Scholar 

  • Buckley LB, Nufio CR, Kingsolver JG (2014) Phenotypic clines, energy balances and ecological responses to climate change. J An Ecol 87:41–50. doi:10.1111/1365-2656.12083

    Article  Google Scholar 

  • Carrington E, Waite JH, Sarà G, Sebens KP (2015) Mussels as a model system for integrative ecomechanics. Annu Rev Mar Sci 7:443–469. doi:10.1146/annurev-marine-010213-135049

    Article  Google Scholar 

  • Dahlhoff EP (2004) Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annu Rev Physiol 66:183–207. doi:10.1146/annurev.physiol.66.032102.114509

    Article  Google Scholar 

  • De Frenne P, Graae BJ, Rodriguez-Sanchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, De Schrijver A, Diekman M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K (2013) Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J Ecol 101:784–795. doi:10.1111/1365-2745.12074

    Article  Google Scholar 

  • Dekker R, Beukema JJ (2014) Phenology of abundance of bivalve spat and of their epibenthic predators: limited evidence for mismatches after cold winters. Mar Ecol Prog Ser 513:17–27. doi:10.3354/meps10989

    Article  Google Scholar 

  • Dell’Aquila A, Calmanti S, Ruti P, Struglia MV, Pisacane G, Carillo A, Sannino G (2012) Impacts of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean. Clim Res 52:135–157. doi:10.3354/cr01037

    Article  Google Scholar 

  • Dowd WW, King FA, Denny MW (2015) Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol 218:1956–1967. doi:10.1242/jeb.114926

    Article  Google Scholar 

  • Estay SA, Lima M, Bozinovic F (2014) The role of temperature variability on insect performance and population dynamics in a warming world. Oikos 123:131–140. doi:10.1111/j.1600-0706.2013.00607.x

    Article  Google Scholar 

  • Estes LD, Bradley BA, Beukes H, Hole DG, Lau M, Oppenheimer MG, Schulze R, Tadross MA, Turner WR (2013) Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting. Glob Ecol Biogeogr 22:1007–1018. doi:10.1111/geb.12034

    Article  Google Scholar 

  • Gaston KJ, Chown SL, Calosi P, Bernardo J, Bilton DT, Clarke A, Clusella-Trullas S, Ghalambor CK, Konarzewski M, Peck LS, Porter WP, Pörtner HO, Rezende EL, Schulte PM, Spicer JI, Stillman JH, Terblanche JS, van Kleunen M (2009) Macrophysiology: a conceptual reunification. Am Nat 174:595–612. doi:10.1086/605982

    Article  Google Scholar 

  • Gilman SE, Wethey DS, Helmuth B (2006) Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proc Natl Acad Sci U S A 103:9560–9565. doi:10.1073/pnas.0510992103

    Article  Google Scholar 

  • Giomi F, Mandaglio C, Ganmanee M, Han GD, Dong YV, Williams GA, Sarà G (2016) The importance of thermal history: costs and benefits of heat exposure in a tropical, rocky shore oyster. J Exp Biol 219:686–694

    Article  Google Scholar 

  • Grabowski JH, Brumbaugh RD, Conrad RF, Keeler AG, Opaluch JJ, Peterson CH, Piehler MF, Powers SP, Smyth AR (2012) Economic valuation of ecosystem services provided by oyster reefs. Bioscience 10:900–909. doi:10.1525/bio.2012.62.10.10

    Google Scholar 

  • Gualdi S et al (2013) Future climate change projections. In: (Navarra A and Tubiana L eds.) regional assessment of climate change in the Mediterranean. Adv Global Change Res 50:53–118

    Article  Google Scholar 

  • Gutierrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Mollusks as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90

    Article  Google Scholar 

  • Helmuth BST (1998) Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecol Monogr 68:51–74

    Article  Google Scholar 

  • Helmuth B, Broitman B, Blanchette CA, Gilman S, Halpin P, Harley CDG, O’Donnell MJ, Hoemann GE, Mange B, Strickland D (2006) Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol Monogr 76:461–479

    Article  Google Scholar 

  • Helmuth B, Yamane L, Lalwani S, Matzelle A, Tockstein A, Gao N (2011) Hidden signals of climate change in intertidal ecosystems: what (not) to expect when you are expecting. J Exp Mar Biol Ecol 400:191–199. doi:10.1016/j.jembe.2011.02.004

    Article  Google Scholar 

  • Helmuth B, Russell BD, Connell SD, Dong Y, Harley CDG, Lima FP, Sarà G, Williams GA, Mieszkowska N (2014) Beyond long-term averages: making biological sense of a rapidly changing world. Adv Clim Chang Res 1:6. doi:10.1186/s40665-014-0006-0

    Article  Google Scholar 

  • Ibanez I, Gornish ES, Buckley L, Debinski DM, Hellmann J, Helmuth B, HilleRisLambers J, Latimer AM, Miller-Rushing AJ, Uriarte M (2012) Moving forward in global-change ecology: capitalizing on natural variability. Ecol Evol 3:170–181. doi:10.1002/ece3.433

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007. In: Parry ML (ed) Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jordà G, Marbà N, Duarte CM (2012) Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Chang 2:821–824. doi:10.1038/nclimate1533

    Article  Google Scholar 

  • Kearney M, Porter WP (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350. doi:10.1111/j.1461-0248.2008.01277.x

    Article  Google Scholar 

  • Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010) Modelling the ecological niche from functional traits. Philos Trans R Soc B 365:3469–3483. doi:10.1098/rstb.2010.0034

    Article  Google Scholar 

  • Kearney MR, Matzelle A, Helmuth B (2012) Biomechanics meets the ecological niche: the importance of temporal data resolution. J Exp Biol 215:922–933. doi:10.1242/jeb.059634

    Article  Google Scholar 

  • Kearney MR, Isaac AP, Porter WP (2014) microclim: Global Estimates of hourly microclimate based on long term monthly climate averages. Sci. Data 1:140006. doi:10.1038/sdata.2014.6

  • Kearney MR, Domingos T, Nisbet R (2015) Dynamic energy budget theory: an efficient and general theory for ecology. Bioscience 65:341–341

    Article  Google Scholar 

  • Kingsolver JG, Woods HA (2016) Beyond thermal performance curves: modeling time-dependent effects of thermal stress on ectotherm growth rates. Am Nat 187:283–294

    Article  Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Hendriks IE, Ramajo L, Singh GG, Duarte C, Gattuso JP (2013) Impacts of ocean acidification on marine biota: quantifying variation in sensitivity among organisms and life stages and at elevated temperature. Glob Chang Biol 19:1884–1896

    Article  Google Scholar 

  • Kroeker KK, Sanford E, Rose JM, Blanchette CA, Chan F, Chavez FP, Gaylord B, Helmuth B, Hill TM, Hofmann GE, McManus MA, Menge BA, Nielsen KJ, Raimondi PT, Russell AD, Washburn L (2016) Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol Lett. doi:10.1111/ele.12613

    Google Scholar 

  • Laughlin DC (2014) Applying trait-based models to achieve functional targets for theory driven ecological restoration. Ecol Lett 17:771–784. doi:10.1111/ele.12288

    Article  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse HA (2008) Significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi:10.1126/science.1157704

    Article  Google Scholar 

  • Lesser MP, Bailey MA, Merselis DG, Morrison JR (2010) Physiological response of the blue mussel Mytilus edulis to differences in food and temperature in the gulf of maine. Comp Biochem Physiol A Physiol 156:541–551. doi:10.1016/j.cbpa.2010.04.012

    Article  Google Scholar 

  • Lika K, Kearney MR, Freitas V, van der Veer HW, van der Meer J, Wijsman JWM, Pequerie L, Kooijman SALM (2011a) The “covariation method” for estimating the parameters of the standard dynamic energy budget model I: philosophy and approach. J Sea Res 66:270–277. doi:10.1016/j.seares.2011.07.010

    Article  Google Scholar 

  • Lika K, Kearney MR, Kooijman SALM (2011b) The “covariation method” for estimating the parameters of the standard dynamic energy budget model II: properties and preliminary patterns. J Sea Res 66:278–288. doi:10.1016/j.seares.2011.09.004

    Article  Google Scholar 

  • Lima FP, Burnett NP, Helmuth B, Kish N, Aveni-Deforge K, Wethey DS (2011) Monitoring the intertidal environment with biomimetic devices. In Cavrak M (ed) Biomimetic bBased aApplications (ed. by M. Cavrak),. InTech, New York, NY. [(available online at www.intechopen.com/books/biomimetic-based-applications/monitoring-the-intertidal-environment-with-biomimetic-devices]) ISBN: 978-953-307-195-4

  • Loreau M. 2006. Population and Ecosystem Approaches in Ecology. In: (Levin SA and Horn HS eds.) From populations to ecosystems : theoretical foundations for a new ecological synthesis. Princeton University Press, pp: 1–18

  • Matzelle AJ, Sarà G, Montalto V, Zippay M, Trusell GC, Helmuth B (2015) A framework for integrating multiple stressors through metabolic theory: opening a ‘black box’ in climate change research. Am Malacol Bull 33:1–11

    Article  Google Scholar 

  • Mislan KAS, Blanchette CA, Broitman BR, Washburn L (2011) Spatial variability of emergence, splash, surge, and submergence in wave-exposed rocky shore ecosystems. Limnol Oceanogr 56:857–866. doi:10.4319/lo.2011.56.3.0857

    Article  Google Scholar 

  • Monaco CJ, Wethey DS, Helmuth B (2014) Dynamic energy budget (DEB) model for the keystone predator Pisaster ochraceus. PLoS ONE 9, e104658. doi:10.1371/journal.pone.0104658

    Article  Google Scholar 

  • Montalto V, Sarà G, Ruti PM, Dell’Aquila A, Helmuth B (2014) Testing the effects of temporal data resolution on predictions of bivalve fitness in the context of global warming. Ecol Model 278:1–8. doi:10.1016/j.ecolmodel.2014.01.019

    Article  Google Scholar 

  • Mumby PJ, Iglesias-Prieto R, Hooten AJ, Sale PF, Hoegh-Guldberg O, Edwards AJ, Harvell D, Gomez ED, Knowlton N, Hatziolos ME, Kyewalyanga MS, Muthiga N (2011) Revisiting climate thresholds and ecosystem collapse. Front Ecol Environ 9:94–95. doi:10.1890/11.WB.002

    Article  Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, Stainforth DA (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772. doi:10.1038/nature02771

    Article  Google Scholar 

  • Otero M, Cebrian E, Francour P, Galil B, Savini D (2013) Monitoring marine invasive species in Mediterranean protected areas (MPAs): a strategy and practical guide for managers. IUCN, Malaga, Spain, pp 1–136

    Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–225. doi:10.1038/nclimate2448

    Article  Google Scholar 

  • Parmesan C, Gaines S, Gonzales L, Kaufman DM, Kingsolver J, Peterson AT, Sagarin R (2005) Empirical perspectives on species borders: from traditional biogeography to global change. Oikos 108:58–75

    Article  Google Scholar 

  • Pearson GA, Lago-Leston A, Mota C (2009) Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. J Ecol 97:450–462. doi:10.1111/j.1365-2745.2009.01481.x

    Article  Google Scholar 

  • Petes LE, Menge BA, Harris AL (2008) Intertidal mussels exhibit energetic trade-offs between reproduction and stress resistance. Ecol Monogr 78:387–402. doi:10.1890/07-0605.1

    Article  Google Scholar 

  • Petes LE, Howard JF, Helmuth B, Fly EK (2014) Science integration into US climate and ocean policy. Nat Clim Chang 4:671–677. doi:10.1038/nclimate2312

    Article  Google Scholar 

  • Philippart CJM, van Aken HM, Beukema JJ, Bos OG, Cadèe GC, Dekker R (2003) Climate-related changes in recruitment of the bivalve Macoma balthica. Limnol Oceanogr 48:2171–2185. doi:10.4319/lo.2003.48.6.2171

    Article  Google Scholar 

  • Pincebourde S, Sanford E, Casas J, Helmuth B (2012) Temporal coincidence of environmental stress events modulates predation rates. Ecol Lett 15:680–688. doi:10.1111/j.1461-0248.2012.01785.x

    Article  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893. doi:10.1242/jeb.037523

    Article  Google Scholar 

  • Post E (2011) Life History Variation and Phenology. In: Ecology of Climate Change: The Importance of Biotic Interactions. Princeton University Press, pp 54–92

  • Potter KA, Woods HA, Pincebourde S (2013) Microclimatic challenges in global change biology. Glob Chang Biol 19:2932–2939. doi:10.1111/gcb.12257

    Article  Google Scholar 

  • Purves D, Scharlemann JPW, Harfoot M, Newbold T, Tittensor DP, Hutton J, Emmott S (2013) Ecosystems: time to model all life on earth. Nature 493:295–297. doi:10.1038/493295a

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    Article  Google Scholar 

  • Sannino G, Herrmann M, Carillo A, Rupolo V, Ruggiero V, Artale V, Heimbach P (2009) An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at the strait of Gibraltar. Ocean Model 30:56–72. doi:10.1016/j.ocemod.2009.06.002

    Article  Google Scholar 

  • Sarà G, Kearney M, Helmuth B (2011) Combining heat-transfer and energy budget models to predict local and geographic patterns of mortality in Mediterranean intertidal mussels. Chem Ecol 27:135–145. doi:10.1080/02757540.2011.552227

    Article  Google Scholar 

  • Sarà G, Palmeri V, Rinaldi A, Montalto V, Helmuth B (2013a) Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a study case with the bivalve Brachidontes pharaonis. Divers Distrib 19:1235–1247. doi:10.1111/ddi.12074

    Article  Google Scholar 

  • Sarà G, Palmeri V, Montalto V, Rinaldi A, Widdows J (2013b) Parameterisation of bivalve functional traits for mechanistic eco-physiological dynamic energy budget (DEB) models. Mar Ecol Prog Ser 480:99–117. doi:10.3354/meps10195

    Article  Google Scholar 

  • Seebacher F, Franklin CE (2012) Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos Trans R Soc B 367:1607–1614

    Article  Google Scholar 

  • Seebacher F, Holmes S, Roosen NJ, Nouvian M, Wilson RS, Ward AJW (2012) Capacity for thermal acclimation differs between populations and phylogenetic lineages within a species. Funct Ecol 26:1418–1428

    Article  Google Scholar 

  • Selkoe KA, Blenckner T, Caldwell MR, Crowder LB, Erickson AL, Essington TE, Estes JA, Fujita RM, Halpern BS, Hunsicker ME, Kappel CV, Kelly RP, Kittinger JN, Levin PS, Lynham JM, Mach ME, Martone RG, Mease LA, Salomon AK, Samhouri JF, Scarborough C, Stier AC, White C, Zedler J (2015) Principles for managing marine ecosystems prone to tipping points. Ecosys Health Sus 1:17. doi:10.1890/EHS14-0024.1

    Article  Google Scholar 

  • Smith JR, Fong P, Ambrose RF (2006) Dramatic declines in mussel bed community diversity: response to climate change? Ecology 87:1153–1161. doi:10.1890/0012-9658

    Article  Google Scholar 

  • Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Ann Rev Mar Sci 4:19–61. doi:10.1146/annurev-marine-120710-100935

    Article  Google Scholar 

  • Stuart-Smith RD, Bates AE, Lefcheck SS, Emmett DJ, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501:539–542. doi:10.1038/nature12529

    Article  Google Scholar 

  • Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JS, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliot MJ, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Roy DB, Scott WA, Smith M, Smithers RJ, Winfield IJ, Wanless S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16:3304–3313. doi:10.1111/j.1365-2486.2010.02165.x

    Article  Google Scholar 

  • the PROTHEUS Group, Artale V, Calmanti S, Carillo A, Dell’Aquila A, Herrmann M, Pisacane G, Ruti PM, Sannino G, Struglia MV, Giorgi F, Bi X, Pal JS, Rauscher S (2010) An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740. doi:10.1007/s00382-009-0691-8

    Article  Google Scholar 

  • Thomas Y, Mazuriè J, Alunno-Bruscia M, Bacher C, Bouget JF, Gohin F, Povreau S, Struski C (2011) Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data. J Sea Res 66:308–317. doi:10.1016/j.seares.2011.04.015

    Article  Google Scholar 

  • van der Meer J (2006) Metabolic theories in ecology. Trends Ecol Evol 21:136–140. doi:10.1016/j.tree.2005.11.004

    Article  Google Scholar 

  • Vasseur DA, DeLong JP, Gilber B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O’Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B 281:20132612. doi:10.1098/rspb.2013.2612

    Article  Google Scholar 

  • Wethey DS (2002) Microclimate, competition, and biogeography: the barnacle Chthamalus fragilis in New England. Integr Comp Biol 42:872–880. doi:10.1093/icb/42.4.872

    Article  Google Scholar 

  • Wethey DS, Brin LD, Helmuth B, Mislan KAS (2011) Predicting intertidal organism temperatures with modified land surface models. Ecol Model 222:3568–3576

    Article  Google Scholar 

  • Woodin SA, Hilbish TJ, Helmuth B, Jones SJ, Wethey DS (2013) Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail. Ecol Evol 3:3334–3346. doi:10.1002/ece3.680

    Google Scholar 

Download references

Acknowledgments

PRIN TETRIS 2010 grant n. 2010PBMAXP_003 (G. Sarà), funded by the Italian Minister of Research and University supported this study. B.H. was supported by a grant from NASA (NNX11AP77). We thank Erika M.D. Porporato for her help with GIS and all collaborators and students from the EEB lab at UNIPA for their efforts during the experimental phase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Montalto.

Ethics declarations

Authorship

VM conceived the idea, performed modelling work, analysed output data and led the writing; GS & BH conceived the idea, developed biophysical models and contributed to writing; PR & AD provided climate data; AR performed modelling work. All authors gave final approval for publication.

Competing interests

The authors declare no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montalto, V., Helmuth, B., Ruti, P.M. et al. A mechanistic approach reveals non linear effects of climate warming on mussels throughout the Mediterranean sea. Climatic Change 139, 293–306 (2016). https://doi.org/10.1007/s10584-016-1780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1780-4

Keywords

Navigation