Skip to main content

Advertisement

Log in

Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

How drought may change in the future are of great concern as global warming continues. In Part I of this study, we examine the uncertainties in estimating recent drought changes. Substantial uncertainties arise in the calculated Palmer Drought Severity Index (PDSI) with Penman-Monteith potential evapotranspiraiton (PDSI_pm) due to different choices of forcing data (especially for precipitation, solar radiation and wind speed) and the calibration period. After detailed analyses, we recommend using the Global Precipitation Climatology Centre (GPCC) or the Global Precipitation Climatology (GPCP) datasets over other existing land precipitation products due to poor data coverage in the other datasets since the 1990s. We also recommend not to include the years after 1980 in the PDSI calibration period to avoid including the anthropogenic climate change as part of the natural variability used for calibration. Consistent with reported declines in pan evaporation, our calculated potential evapotranspiration (PET) shows negative or small trends since 1950 over the United States, China, and other regions, and no global PET trends from 1950 to 1990. Updated precipitation and streamflow data and the self-calibrated PDSI_pm all show consistent drying during 1950–2012 over most Africa, East and South Asia, southern Europe, eastern Australia, and many parts of the Americas. While these regional drying trends resulted primarily from precipitation changes related to multi-decadal oscillations in Pacific sea surface temperatures, rapid surface warming and associated increases in surface vapor pressure deficit since the 1980s have become an increasingly important cause of widespread drying over land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam JC, Lettenmaier DP (2008) Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in northern Eurasia. J Clim 21:1807–1828

    Article  Google Scholar 

  • Barriopedro D, Gouveia CM, Trigo RM, Wang L (2012) The 2009/10 drought in China: possible causes and impacts on vegetation. J Hydrometeorol 13:1251–1267

    Article  Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Burke EJ, Brown SJ, Christidis N (2006) Modeling the recent evolution of global drought and projections for the twenty-first century with the hadley centre climate model. J Hydrometeorol 7:1113–1125

    Article  Google Scholar 

  • Cook BI, Smerdon JE, Seager R, Coats S (2014) Global warming and twenty-first century drying. Clim Dyn 43:2607–2627

    Article  Google Scholar 

  • Compo GP et al. (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Dai A (2011a) Drought under global warming: a review. WIREs Clim Change 2:45–65

    Article  Google Scholar 

  • Dai A (2011b) Characteristics and trends in various forms of the palmer drought severity index during 1900–2008. J Geophys Res 116:D12115

    Article  Google Scholar 

  • Dai A (2013a) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • Dai A (2013b) The influence of the inter-decadal Pacific oscillation on U.S. precipitation during 1923-2010. Clim Dyn 41:633–646

    Article  Google Scholar 

  • Dai A (2016) Historical and future changes in streamflow and continental runoff: A review. AGU Monograph entitled “Terrestrial Water Cycle and Climate Change: Natural and Human-induced Impacts” (eds by Tang Q et al.), in press.

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900-1988. J Clim 10:2943–2962

    Article  Google Scholar 

  • Dai A, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900–1995. Geophys Res Lett 25:3367–3370. doi:10.1029/98GL52511

    Article  Google Scholar 

  • Dai A, Wigley TML (2000) Global patterns of ENSO-induced precipitation. Geophys Res Lett 27:1283–1286

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130. doi:10.1175/JHM-386.1

    Article  Google Scholar 

  • Dai A, Qian T, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1949 to 2004. J Clim 22:2773–2791

    Article  Google Scholar 

  • Dong B, Dai A (2015) The influence of the inter-decadal Pacific oscillation on temperature and precipitation over the globe. Clim Dyn 45:2667–2681. doi:10.1007/s00382-012-1446-5

    Article  Google Scholar 

  • Feng S, Fu Q (2013) Expansion of global dry lands under warming climate. Atmos Chem Phys 13:10081–10094

    Article  Google Scholar 

  • Hoerling M, Kumar A, Dole R, Nielsen-Gammon JW, Eischeid J, Perlwitz J, Quan X-W, Zhang T, Pegion P, Chen M (2012) Anatomy of an extreme event. J Clim 26:2811–2832. doi:10.1175/JCLI-D-12-00270.1

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis (eds Solomon S et al.). Cambridge University Press, Cambridge.

  • IPCC (2013) Climate Change 2013: The Physical Science Basis (eds Stocker TE et al.). Cambridge University Press, Cambridge.

  • Lewis S, Brando P, Phillips O, van der Heijden G, Nepstad D (2011) The 2010 Amazon drought. Science 331:554–554

    Article  Google Scholar 

  • Liu ZY (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995

    Article  Google Scholar 

  • Lyon B, DeWitt DG (2012) A recent and abrupt decline in the east African long rains. Geophys Res Lett 39:L02702. doi:10.1029/2011GL050337

    Article  Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, deOliveira GS, de Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21:495–516

    Article  Google Scholar 

  • McGrath GS, Sadler R, Fleming K, Tregoning P, Hinz C, Veneklaas EJ (2012) Tropical cyclones and the ecohydrology of Australia’s recent continental-scale drought. Geophys Res Lett 39:L03404. doi:10.1029/2011GL050263

    Google Scholar 

  • McVicar TR et al. (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416-417:182–205

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216. doi:10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  • Myhre, G., et al, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740, doi:10.1017/CBO9781107415324.018.

  • Palmer WC (1965) Meteorological drought. US Weather Bureau Research Paper 45: 55 pp

  • Peterson T, Stott P, Herring S (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteorol Soc 93:1041–1067

    Article  Google Scholar 

  • Prudhomme C et al. (2014) Hydrological droughts in the twenty-first century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci U S A 111:3262–3267. doi:10.1073/pnas.1222473110

    Article  Google Scholar 

  • Scheff J, Frierson D (2014) Scaling potential evapotranspiration with greenhouse warming. J Clim 27:1539–1558. doi:10.1175/JCLI-D-13-00233.1

    Article  Google Scholar 

  • Scheff J, Frierson D (2015) Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J Clim 28:5583–5600

    Article  Google Scholar 

  • Seager R et al. (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

    Article  Google Scholar 

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491(7424):435–438. doi:10.1038/nature11575

    Article  Google Scholar 

  • Sun C, Yang S (2012) Persistent severe drought in southern China during winter and spring 2011: large-scale circulation patterns and possible impacting factors. J Geophys Res 117:D10112. doi:10.1029/2012JD017500

    Article  Google Scholar 

  • Swenson, SC (2012) GRACE monthly land water mass grids NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA. Dataset accessed on 2016–02-24 at doi:10.5067/TELND-NC005.

  • Taylor IH, Burke E, McColl L, Falloon PD, Harris GR, McNeall D (2013) The impact of climate mitigation on projections of future drought. Hydrol Earth Syst Sci 17:2339–2358. doi:10.5194/hess-17-2339-2013

    Article  Google Scholar 

  • Trenberth KE, et al (2007) Observations: Surface and Atmospheric Climate Change. Climate Change 2007: The Physical Science Basis, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miler, Ed., Cambridge University Press, 235–336.

  • Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22

    Article  Google Scholar 

  • van der Schrier G, Efthymiadis D, Briffa KR, Jones PD (2007) European alpine moisture variability for 1800-2003. Int J Climatol 27:415–427. doi:10.1002/joc.1411

    Article  Google Scholar 

  • van der Schrier G, Jones PD, Briffa KR (2011) The sensitivity of the PDSI to the Thornthwaite and penman-Monteith parameterizations for potential evapotranspiration. J Geophys Res Atmos 116:D03106. doi:10.1029/2010JD015001

    Google Scholar 

  • van der Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos 118:4025–4048. doi:10.1002/jgrd.50355

    Article  Google Scholar 

  • Wang GL (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753

    Article  Google Scholar 

  • Wang K, Dickinson RE, Liang S (2012) Global atmospheric evaporative demand over land from 1973 to 2008. J Clim 25:8353–8361

    Article  Google Scholar 

  • Wehner M, Easterling DR, Lawrimore JH, Heim RR, Vose RS, Santer BD (2011) Projections of future drought in the continental United States and Mexico. J Hydrometeorol 12:1359–1377

    Article  Google Scholar 

  • Wei K, Wang L (2013) Reexamination of the aridity conditions in arid northwestern China for the last decade. J Clim 26:9594–9602

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351

    Article  Google Scholar 

  • Wilhite DA (2000) Drought as a natural hazard: concepts and definitions. In: Wilhite DA (ed) Droughts: a global assessment. Routledge, New York, pp. 3–18

    Google Scholar 

  • Williams AP, Seager R, Abatzoglou JT, Cook BI, Smerdon JE, Cook ER (2015) Contribution of anthropogenic warming to California drought during 2012–2014. Geophys Res Lett 42:6819–6828. doi:10.1002/2015GL064924

    Article  Google Scholar 

  • Zhai J, Su B, Krysanova V, Vetter T, Gao C, Jiang T (2010) Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J Clim 23:649–663

    Article  Google Scholar 

  • Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-firstcentury under a low–low-moderate emissions scenario. J Clim 28:4490–4512

    Article  Google Scholar 

  • Zhao T, Dai A (2016) Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim Change (this issue).

  • Zhao W, Khalil MAK (1993) The relationship between precipitation and temperature over the contiguous United States. J Clim 6:1232–1236

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Scheff, G. van der Schrier and another anonymous reviewer for constructive review comments. This study was supported by the National Key Basic Research Program of China (Grant No.2012CB956203), the U.S. National Science Foundation (Grant #AGS-1353740), U.S. Department of Energy’s Office of Science (Award #DE-SC0012602), and the U.S. National Oceanic and Atmospheric Administration (Award #NA15OAR4310086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Dai.

Additional information

This article is part of a Special Issue on “Decadal Scale Drought in Arid Regions” edited by Zong-Liang Yang and Zhuguo Ma.

Electronic supplementary material

ESM 1

(DOCX 4.81 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, A., Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change 144, 519–533 (2017). https://doi.org/10.1007/s10584-016-1705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1705-2

Keyword

Navigation