Skip to main content
Log in

Increasing Northern Hemisphere water deficit

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A monthly water-balance model is used with CRUTS3.1 gridded monthly precipitation and potential evapotranspiration (PET) data to examine changes in global water deficit (PET minus actual evapotranspiration) for the Northern Hemisphere (NH) for the years 1905 through 2009. Results show that NH deficit increased dramatically near the year 2000 during both the cool (October through March) and warm (April through September) seasons. The increase in water deficit near 2000 coincides with a substantial increase in NH temperature and PET. The most pronounced increases in deficit occurred for the latitudinal band from 0 to 40°N. These results indicate that global warming has increased the water deficit in the NH and that the increase since 2000 is unprecedented for the 1905 through 2009 period. Additionally, coincident with the increase in deficit near 2000, mean NH runoff also increased due to increases in P. We explain the apparent contradiction of concurrent increases in deficit and increases in runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen RG, Smith M, Pereira LS, Perrier A (1994) An update for the calculation of reference evapotranspiration. ICID Bulletin 43:35–92

  • Apipattanavis S, McCabe GJ, Rajagopalan B, Gangopadhyay S (2009) Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values. J Clim 22:6251–6267. doi:10.1175/2009JCLI2791.1

    Article  Google Scholar 

  • Arnell NW (2003) Effects of IPCC SRES emissions scenarios on river runoff: a global perspective. Hydrol Earth Syst Sci 7:619–641

    Article  Google Scholar 

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265:164–177

    Article  Google Scholar 

  • Budyko MI (1948) Evaporation under natural conditions. Gidrometeorizdat, Leningrad, English translation by IPST, Jerusalem

    Google Scholar 

  • Burke EJ, Brown SJ (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9:292–299

    Article  Google Scholar 

  • Chen X, Tung K-K (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345:897–903. doi:10.1126/science.1254937

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2014) Summary for Policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, and White LL (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Dai A (2011) Drought under global warming: a review. WIREs Clim Chang 2:45–65. doi:10.1002/wcc.81

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • Dai A, Trenberth KE, Qian T (2004) A global data set of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130

    Article  Google Scholar 

  • Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR, Holden ZA, Schwartz MK (2013) The climate velocity of the contiguous United States during the 20th century. Glob Chang Biol 19:241–251. doi:10.1111/gcb.12026

    Article  Google Scholar 

  • Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706. doi:10.1029/2009GL037810

    Article  Google Scholar 

  • Ekstrom M, Jones PD, Fowler HF, Lenderink G, Buishand TA, Conway D (2007) Regional climate model data used within the SWURVE project 1: projected changes in seasonal patterns and estimation of PET. Hydrol Earth Syst Sci 11:1069–1083

    Article  Google Scholar 

  • England MH, McGregor S, Spence P, Meeh GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Chang 4:222–227

    Article  Google Scholar 

  • Falkenmark M, Rockstrom J (2006) The new blue and green water paradigm: breaking new ground for water resources planning and management. J Water Res Pl-ASCE May/June, 129–132

  • Gleick PH (2000) Water: the potential consequences of climate variability and change for the water resources of the U.S. The Report of the Water Sector Assessment Team of the National Assessment of the Potential Consequences of Climate Variability and Change, Pacific Institute for Studies in Development, Environment, and Security, Oakland, 151

    Google Scholar 

  • Hoerling MP, Kumar A (2003) The perfect ocean for drought. Science 299:691–694

    Article  Google Scholar 

  • Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18,567–18,589

    Article  Google Scholar 

  • McCabe GJ, Markstrom SL (2007) A monthly water-balance model driven by a graphical user interface. U.S. Geological Survey Open-File report 2007–1088, 6 p

  • McCabe GJ, Palecki MA (2006) Multidecadal climate variability of global lands and oceans. Int J Climatol 26:849–865. doi:10.1002/joc.1289

    Article  Google Scholar 

  • McCabe G, Wolock DM (2008) Joint variability of global runoff and global sea surface temperatures. J Hydrometeorol 9:816–824. doi:10.1175/2008JHM943.1

    Article  Google Scholar 

  • McCabe GJ, Wolock DM (2011) Independent effects of temperature and precipitation on modeled runoff in the conterminous United States. Water Resour Res 47:W11522. doi:10.1029/2011WR010630

    Google Scholar 

  • McCabe GJ, Wolock DM (2014) Temporal and spatial variability of the global water balance. Clim Chang. doi:10.1007/s10584-013-0798-0

    Google Scholar 

  • McDonald RI, Girvetz EH (2013) Two challenges for U.S. irrigation due to climate change: increasing irrigated area in wet states and increasing irrigation rates in dry states. PLoS ONE 8(6):e65589. doi:10.1371/journal.pone.0065589

    Article  Google Scholar 

  • Meehl GA, Teng H (2014) CMIP5 multi-model hindcasts for the mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys Res Lett 41:1711–1716

    Article  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350. doi:10.1038/nature04312

    Article  Google Scholar 

  • Montieth JL (1964) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    Google Scholar 

  • Nijssen B, O’Donnell GM, Hamlet A, Lettenmaier DP (2000) Hydrologic sensitivity of global rivers to climate change. Clim Chang 50:515–517

    Google Scholar 

  • Redmond KT, Koch RW (1991) Surface climate and streamflow variability in the western United States and their relationship to large scale circulation indices. Water Resour Res 27:2381–2399. doi:10.1029/91WR00690

    Article  Google Scholar 

  • Rind D, Goldberg R, Hansen J, Rosenzweig C, Ruedy R (1990) Potential evapotranspiration and the likelihood of future drought. J Geophys Res 95:9983–10004

    Article  Google Scholar 

  • Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N, Leetmaa A, Lau N-C, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

    Article  Google Scholar 

  • Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–440. doi:10.1038/nature11575

    Article  Google Scholar 

  • Shuttleworth WJ (1993) In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 4.1–4.53

    Google Scholar 

  • Steinman BA, Mann ME, Miller SK (2015) Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347:988–991

    Article  Google Scholar 

  • Stephenson N (1990) Climatic control of vegetation distribution: the role of the water balance. Am Naturalist 135:649–670

    Article  Google Scholar 

  • Stephenson NL (1998) Actual evapotranspiration and deficit: biological meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Wang GL (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753

    Article  Google Scholar 

  • Weiskel PK, Wolock DM, Zarriello PJ, Vogel RM, Levin SB, Lent RM (2014) Hydroclimatic regimes: a distributed water-balance framework for hydrologic assessment and classification. Hydrol Earth Syst Sci Discuss 11:2933–2965. www.hydrol-earth-syst-sci-discuss.net/11/2933/2014/, doi:10.5194/hessd-11-2933-2014

  • Willmott CJ, Feddema JJ (1992) A more rational climatic moisture index. Professor Geogr 44:84–88. doi:10.1111/j.0033-0124.1992.00084.x

    Article  Google Scholar 

  • Wolock DM, McCabe GJ (1999) Effects of potential climatic change on annual runoff in the conterminous United States. J Am Water Resour Assoc 35:1341–1350

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. McCabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCabe, G.J., Wolock, D.M. Increasing Northern Hemisphere water deficit. Climatic Change 132, 237–249 (2015). https://doi.org/10.1007/s10584-015-1419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1419-x

Keywords

Navigation