Climatic Change

, Volume 122, Issue 3, pp 431-445

First online:

Open Access This content is freely available online to anyone, anywhere at any time.

Systematic construction of global socioeconomic pathways using internally consistent element combinations

  • Vanessa J. SchweizerAffiliated withNational Center for Atmospheric Research Email author 
  • , Brian C. O’NeillAffiliated withNational Center for Atmospheric Research


Shared Socioeconomic Pathways (SSPs) describe alternative outcomes for socioeconomic development. Papers describing the conceptual framework for SSPs refer to challenges to mitigation and to adaptation as fundamental concepts. Identifying which socioeconomic factors are the most important determinants of these challenges, and how to combine them in an internally consistent manner, is critical to scenario design. Here we demonstrate a systematic and traceable approach for identifying and prioritizing scenario elements. In this study, we identify 13 determinants of mitigation and adaptation challenges at a globally aggregated scale based on a survey of 25 experts. In addition, we use 19 expert elicitations and a cross-impact balance analysis to create approximately 1.5 million combinations of trends for these determinants and rank them in terms of internal consistency. Using the 1,000 most consistent combinations, we construct composite metrics for challenges to mitigation and adaptation to uncover distinguishable characteristics for five types of SSPs: those with Low, Medium, and High challenges to both mitigation and adaptation (consistent with SSPs 1–3), and those in which adaptation challenges or mitigation challenges dominate (consistent with SSPs 4–5). We find a distinguishing characteristic for mixed typology SSP4 (low mitigation challenges, high adaptation challenges): High trends for innovation capacity could lower challenges to mitigation but not necessarily challenges to adaptation. We also find that a low trend for quality of governance consistently corresponds to higher challenges to adaptation. These findings are suggestive for future research on the SSPs in particular, while our analytical approach is instructive for scenario development in general.