Skip to main content

Advertisement

Log in

Climate change at the ecosystem scale: a 50-year record in New Hampshire

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Observing the full range of climate change impacts at the local scale is difficult. Predicted rates of change are often small relative to interannual variability, and few locations have sufficiently comprehensive long-term records of environmental variables to enable researchers to observe the fine-scale patterns that may be important to understanding the influence of climate change on biological systems at the taxon, community, and ecosystem levels. We examined a 50-year meteorological and hydrological record from the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, an intensively monitored Long-Term Ecological Research site. Of the examined climate metrics, trends in temperature were the most significant (ranging from 0.7 to 1.3 °C increase over 40–50 year records at 4 temperature stations), while analysis of precipitation and hydrologic data yielded mixed results. Regional records show generally similar trends over the same time period, though longer-term (70–102 year) trends are less dramatic. Taken together, the results from HBEF and the regional records indicate that the climate has warmed detectably over 50 years, with important consequences for hydrological processes. Understanding effects on ecosystems will require a diversity of metrics and concurrent ecological observations at a range of sites, as well as a recognition that ecosystems have existed in a directionally changing climate for decades, and are not necessarily in equilibrium with the current climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:1–22. doi:10.1029/2005JD006290.

    Google Scholar 

  • Auclair AND (2005) Patterns and general characteristics of severe forest dieback from 1950 to 1995 in the northeastern United States. Can J For Res 35:1342–1355. doi:10.1139/x05-066

    Article  Google Scholar 

  • Bailey AS, Hornbeck JW, Campbell JL, Eagar C (2003) Hydrometerological database for Hubbard Brook Experimental Forest: 1955–2000. USDA Forest Service, NE Research Station General Technical Report NE-305. http://www.treesearch.fs.fed.us/pubs/5406

  • Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc Nat Acad Sci 105:4197–4202. doi:10.1073/pnas.0708921105

    Article  Google Scholar 

  • Borque CP, Cox RM, Allen DJ, Arp PA, Meng FR (2005) Spatial extent of winter thaw events in eastern North America: historical weather records in relation to yellow birch decline. Global Change Biol 11:1477–1492. doi:10.1111/j.1365-2486.2005.00956.x

    Article  Google Scholar 

  • Budyko MI (1974) Climate and life. Academic Press

  • Burakowski EA, Wake CP, Braswell B, Brown DP (2008) Trends in wintertime climate in the northeastern United States: 1965–2005. J Geophys Res 113:D20114. doi:10.1029/2008JD009870

    Article  Google Scholar 

  • Campbell JL, Rustad LE, Boyer EW et al (2009) Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Can J For Res 39:264–284. doi:10.1139/X08-104

    Article  Google Scholar 

  • Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS (2010) Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrol Proc 24:2465–2480. doi:10.1002/hyp.7666

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A et al (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Cambridge University Press, New York

    Google Scholar 

  • Cohn TA, Lins HF (2005) Nature’s style: naturally trendy. Geophys Res Lett 32:L23402. doi:10.1029/2005GL024476

    Article  Google Scholar 

  • Easterling DR (2002) Recent changes in frost days and the frost-free season in the United States. Bull Am Meteorol Soc 83:1327–1332

    Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • Evans AM, Gregoire TG (2007) A geographically variable model of hemlock woolly adelgid spread. Biol Invas 9:369–382. doi:10.1007/s10533-008-9256-x

    Article  Google Scholar 

  • Folland CK, Rayner NA, Brown SJ et al (2001) Global temperature change and its uncertainties since 1861. Geophys Res Let 28:2621–2624. doi:10.1029/2001GL012877

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta P, Gleason P, Haylock M, Klein AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193

    Article  Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

    Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150. doi:10.1139/x84-173

    Article  Google Scholar 

  • Gu L, Hanson PJ, MacPost W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freeze: increased cold damage in a warming world? Bioscience 58:253–262. doi:10.1641/B580311

    Article  Google Scholar 

  • Hamburg SP, Cogbill CV (1988) Historical decline of red spruce populations and climatic warming. Nature 331:428–431. doi:10.1038/331428a0

    Article  Google Scholar 

  • Hawley GJ, Schaberg PG, Eagar C, Borer CH (2006) Calcium addition at the Hubbard Brook Experimental Forest reduced winter injury to red spruce in a high-injury year. Can J For Res 36:2544–2549. doi:10.1139/X06-221

    Article  Google Scholar 

  • Hayhoe K, Wake CP, Huntington TG et al (2007) Past and future changes in climate and hydrological indicators in the US Northeast. Clim Dyn 28:381–407. doi:10.1007/s00382-006-0187-8

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Studies in Environmental Science 49. Elsevier Science, Amsterdam

    Google Scholar 

  • Hodgkins GA, Dudley RW (2006) Changes in late-winter snowpack depth, water equivalent, and density in Maine, 1926–2004. Hydrol Proc 20:741–751. doi:10.1002/hyp.6111

    Article  Google Scholar 

  • Hodgkins GA, James IC, Huntington TG (2002) Historical changes in lake ice-out dates as indicators of climate change in New England, 1850–2000. Int J Climatol 22:1819–1827. doi:10.1002/joc.857

    Article  Google Scholar 

  • Hodgkins GA, Dudley RW, Huntington TG (2003) Changes in the timing of high river flows in New England over the 20th Century. J Hydrol 278:244–252

    Article  Google Scholar 

  • Hollinger DY, Aber J, Dail B et al (2004) Spatial and temporal variability in forest-atmosphere CO2 exchange. Glob Chang Biol 10:1689–1706. doi:10.1111/j.1365-2486.2004.00847.x

    Article  Google Scholar 

  • Houle G (2007) Spring-flowering herbaceous plant species of the deciduous forests of eastern Canada and 20th century climate warming. Can J For Res 37:505–512. doi:10.1139/X06-239

    Article  Google Scholar 

  • Hufkens K, Sonnentag O, Keenan TF et al (2011) Community impacts of mid-May frost event during an anomalously warm spring. Am Geophys U. http://static.coreapps.net/agu2011/html/B21J-08.html

  • Huntington TG (2005). Assessment of calcium status in Maine forests: review and future projection. Can J Forest Res 35:1109–1121. doi:10.1139/x05-034

    Google Scholar 

  • Huntington TG, Hodgkins GA, Dudley RW (2003) Historical trend in river ice thickness and coherence in hydroclimatlogical trends in Maine. Clim Change 61:217–236. doi:10.1023/A:1026360615401

    Article  Google Scholar 

  • Huntington TG, Hodgkins GA, Keim BD, Dudley RW (2004) Changes in precipitation occurring as snow in New England (1949–2000). J Clim 17:2626–2636

    Article  Google Scholar 

  • Huntington TG, Richardson AD, McGuire KJ, Hayhoe K (2009) Climate and hydrological changes in the northeastern United States: recent trends and implications for forested and aquatic ecosystems. Can J For Res 39:199–212. doi:10.1139/X08-116

    Article  Google Scholar 

  • Iverson LR, Prasad AM (2002) Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. For Ecol Manage 155:205–222. doi:10.1016/S0378-1127(01)00559-X

    Article  Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149. doi:10.1038/382146a0

    Article  Google Scholar 

  • Keim BD, Wilson AM, Wake CP, Huntington TG (2003) Are there spurious temperature trends in the United States Climate Division database? Geophys Res Lett 30:1404. doi:10.1029/2002GL016295

    Article  Google Scholar 

  • Kunkel KE, Easterling DR, Hubbard K, Redmond K (2004) Temporal variations in frost-free season in the United States: 1895–2000. Geophys Res Lett 31:L03201. doi:10.1029/2003GL018624

    Article  Google Scholar 

  • Likens GE (2009) A limnological introduction to Mirror Lake. In: Winter TC, Likens GE (eds) Mirror Lake: interactions among air, land, and water. University of California Press, Berkeley

    Google Scholar 

  • Likens GE, Bormann FH (1995) Biogeochemistry of a forested ecosystem. Springer, New York, p 195

    Book  Google Scholar 

  • Lins HF, Slack JR (1999) Streamflow trends in the United States. Geophys Res Lett 26:227–230

    Article  Google Scholar 

  • Lins HF, Slack JR (2005) Seasonal and regional characteristics of US streamflow trends in the United States from 1940 to 1999. Phys Geogr 26:489–501. doi:10.2747/0272-3646.26.6.489

    Article  Google Scholar 

  • Liu J, Curry JA, Dai Y, Horton R (2007) Causes of the northern high-latitude land surface winter climate change. Geophys Res Lett 34:L14702

    Article  Google Scholar 

  • Lugina KM, Groisman PY, Vinnikov KY, Koknaeva VV, Speranskaya NA (2004) Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe, 1881–2004. Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Lund AE, Livingston WH (1999) Freezing cycles enhance winter injury in Picea rubens. Tree Phys 19:65–69. doi:10.1093/treephys/19.1.65

    Article  Google Scholar 

  • McCabe GJ, Wolock DM (2002) A step increase in streamflow in the conterminous United States. Geophys Res Lett 29(24):2185. doi:10.1029/2002GL015999

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Mohan JE, Cox RM, Iverson LR (2009) Composition and carbon dynamics of forests in northeastern North America in a future, warmer world. Can J For Res 39:213–230. doi:10.1139/X08-185

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  Google Scholar 

  • Primack D, Imbres C, Primack RB, Miller-Rushing AJ, Del Tredici P (2004) Herbarium specimens demonstrate earlier flowering times in response to warming in Boston. Am J Bot 91:1260–1264

    Article  Google Scholar 

  • Rhoads AG, Hamburg S, Fahey TJ et al (2002) Effects of an intense ice storm on the structure of a northern hardwood forest. Can J For Res 32:1763–1775. doi:10.1139/X02-089

    Article  Google Scholar 

  • Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Global Change Biol 12:1174–1188. doi:10.1111/j.1365-2486.2006.01164.x

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Dail DB et al (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Phys 29:321–331. doi:10.1093/treephys/tpn040

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562. doi:10.1007/s004420000544

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends of spring time frost events and phenological dates in central Europe. Theor Appl Climatol 74:41–51. doi:10.1007/s00704-002-0704-6

    Article  Google Scholar 

  • Schwartz MD, Reiter BE (2000) Changes in North American Spring. Int J Climatol 20:929–932

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol 12:43–351. doi:10.1111/j.1365-2486.2005.01097.x

    Article  Google Scholar 

  • Schwarz PA, Fahey TJ, Martin CW, Siccama TG, Bailey A (2001) Structure and composition of three northern hardwood-conifer forests with differing disturbance histories. For Ecol Manage 144:201–212. doi:10.1016/S0378-1127(00)00371-6

    Article  Google Scholar 

  • Skinner M, Parker BL, Gouli S, Ashikaga T (2003) Regional responses of hemlock woolly adelgid to low temperatures. Environ Entomol 32:523–528

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the Extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211

    Article  Google Scholar 

  • Trombulak SC, Wolfson R (2004) Twentieth-century climate change in New England and New York, USA. Geophys Res Lett 31:L19202. doi:10.1029/2004GL020574

    Article  Google Scholar 

  • Vadeboncoeur MA, Hamburg SP, Cogbill CV, Sigamura WY (2012) A comparison of presettlement and modern forest composition along an elevation gradient in central New Hampshire. Can J For Res 41:190–202. doi:10.1139/x11-169

    Article  Google Scholar 

  • Wayne PM, Reekie EG, Bazzaz FA (1998) Elevated CO2 ameliorates birch response to high temperature and frost stress: implications for modeling climate-induced geographic range shifts. Oecologia 114:335–342. doi:10.1007/s004420050455

    Article  Google Scholar 

  • Weeks BC, Hamburg SP, Vadeboncoeur MA (2009) Ice storm effects on the canopy structure of a northern hardwood forest after 8 years. Can J For Res 39:1475–1483. doi:10.1007/s004420050455

    Article  Google Scholar 

  • Wehner MF (2004) Predicted twenty-first-century changes in seasonal extreme precipitation events in the parallel climate model. J Clim 17:4281–4290

    Article  Google Scholar 

  • White MA, Nemani RR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biol 9:967–972. doi:10.1046/j.1365-2486.2003.00585.x

    Article  Google Scholar 

  • Winkler S (2004) A user-written SAS program for estimating temporal trends and their magnitude. Technical Publication SJ2004-4. St. Johns River Water Management District, Palatka, FL. Available at: http://www.sjrwmd.com/technicalreports/pdfs/TP/SJ2004-4.pdf (Accessed March 19, 2005)

  • Wolfe DW, Schwartz MD, Lakso AN et al (2005) Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int J Biometeorol 49:303–309

    Article  Google Scholar 

Download references

Acknowledgments

The data presented were collected and processed by dozens of USFS employees, whose careful attention to detail was critical to maintaining the quality of this record. We are grateful to all those involved, especially Wayne Martin, Tony Federer and Jim Hornbeck. We thank Mark Green for helpful discussion regarding hydrologic trends. HBEF is now an NSF-funded Long-Term Ecological Research site, operated by the USFS Northern Research Station. This work was funded by NSF grant 0423259 to SPH, and is a contribution to the Hubbard Brook Ecosystem Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Vadeboncoeur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamburg, S.P., Vadeboncoeur, M.A., Richardson, A.D. et al. Climate change at the ecosystem scale: a 50-year record in New Hampshire. Climatic Change 116, 457–477 (2013). https://doi.org/10.1007/s10584-012-0517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0517-2

Keywords

Navigation