Skip to main content

Advertisement

Log in

Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

We developed a multi-trophic level ecosystem model by coupling physical, biogeochemical-plankton and fish models. An oceanic general circulation model was coupled with a lower trophic level ecosystem model and a Japanese sardine migration model, and applied to the western North Pacific. To investigate the impact of global warming on the pelagic fish ecosystem, such as Japanese sardine, we conducted numerical experiments of growth and migration of Japanese sardine using physical fields for the present day and future with a global warming scenario simulated by a high-resolution climate model. The model results demonstrated possible impacts of global warming on the growth and migration pattern of Japanese sardine. The growths of fish in the current main spawning region under the global warming scenario were significantly slower than those under the present climate scenario. Fish in this region will be at disadvantage for their recruitment under the global warming condition. Prey conditions in the spawning region were projected not to markedly change under global warming condition while water temperature increased. As a result sardine spawning ground was projected to shift towards more north areas. During the feeding migration period in summer, geographical distribution of juveniles fish was projected to shift northwards by one to two degrees latitude under the global warming condition following the change in the distribution of optimal temperature region for feeding. However, this northwards shift of the optimal temperature for feeding was minimized adjacent to the western North Pacific by the cooler water supply by the intensification of the Oyashio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Drinkwater KF (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62:1327–1337

    Article  Google Scholar 

  • Hashioka T, Sakamoto TT, Yamanaka Y (2009) Potential impact of global warming on spring bloom projected by an eddy-permitting 3-D ecosystem model. Geophys Res Lett 36:L20604

    Article  Google Scholar 

  • Hiramoto K (1981) Studies on the growth and life-cycle of the Japanese sardine, Sardinops melanosticta (Temminck et Schlegel) in its Pacific sub-population found in Joban and Boso regions. Bull Chiba Pref Fish Expl Stn 39:1–127 (in Japanese)

    Google Scholar 

  • Huse G, Ellingsen I (2008) Capelin migrations and climate change—a modelling analysis. Clim Chang 87:177–197

    Article  Google Scholar 

  • Ikeda T, Motoda S (1978) Estimated zooplankton production and their ammonia excretion in the Kuroshio and adjacent seas. Fish Bull 76:357–368

    Google Scholar 

  • IPCC (2000) In: Nebojsa N, Swart R (eds) Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007 – The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Ishida M (2006) Rapid decrease of egg production of Pacific stock of Japanese sardine, Sardinops melanostictus, and characteristics of persistent spawning ground in Tosa Bay, southwestern Japan. Bull Jpn Soc Fish Oceanogr 70:70–175

    Google Scholar 

  • Ito S, Kishi MJ, Kurita Y, Oozeki Y, Yamanaka Y, Megrey BA, Werner FE (2004) Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish Oceanogr 13:111–124

    Article  Google Scholar 

  • Ito S, Shimizu Y, Kakehi S, Saito H, Kuwata A, Takahashi K, Sugisaki H, Okazaki Y, Kashima M, Tatesawa M, Kwasaki Y, Kusaka A, Ono T, Kasai H (2006) Global warming trends in the Oyashio and Mixed Water region and the response scenario of the lower trophic level ecosystem. Kaiyo Monthly 38:161–167 (in Japanese)

    Google Scholar 

  • Ito S, Yoshie N, Okunishi T, Ono T, Okazaki Y, Kuwata A, Hashioka T, Rose KA, Megrey BA, Kishi MJ, Nakamachi M, Shimizu Y, Kakehi S, Saito H, Takahashi K, Tadokoro K, Kusaka A, Kasai H (2010) Application of an automatic approach to calibrate the NEMURO nutrient–phytoplankton–zooplankton food web model in the Oyashio region. Prog Oceanogr 87:186–200

    Article  Google Scholar 

  • K-1 Model Developers (2004) K-1 coupled model (MIROC) description, T-1 Tech. Rep., 1, edited by H. Hasumi and S. Emori, 34 pp., Cent. For Clim. Syst. Res., Univ. of Tokyo, Tokyo

  • Kawai T (1987) A study on variability marine teleost resources from a viewpoint of comparative ecology. Bull Tokai Reg Fish Res Lab 122:49–127 (in Japnaese)

    Google Scholar 

  • Kishi MJ, Kashiwai M, Ware DM, Megrey BA, Eslinger DL, Werner FE, Noguchi-Aita M, Azumaya T, Fujii M, Hashimoto S, Huang D, Iizumi H, Ishida Y, Kang S, Kantakov GA, Kim H, Komatsu K, Navrotsky VV, Smith SL, Tadokoro K, Tsuda A, Yamamura O, Yamanaka Y, Yokouchi K, Yoshie N, Zhang J, Zuenko YI, Zvalinsky VI (2007) NEMURO—a lower trophic level model for the North Pacific marine ecosystem. Ecol Model 202:12–25

    Article  Google Scholar 

  • Kondo K (1980) The recovery of the Japanese sardine—the biological basis of stock-size fluctuation. Rapp P-V Reun Cons Int Explor Mer 177:332–354

    Google Scholar 

  • Kubota H, Oozeki Y, Ishida M, Konishi Y, Goto T, Zenitani H, Kimura R (1999) Distribution of eggs and larvae of Japanese Sardine, Japanese anchovy, Mackerels, Round herring, Jack mackerel and Japanese common squid in the water around Japan, 1994 through 1996. National Research Institute, Fisheries Agency Resources Management Research Report Series A-2

  • Kuroda K (1991) Studies on the recruitment process focusing on the early life history of the Japanese sardine, Sardinops melanostictus (Schelegen). Bull Natl Res Inst Fish Sci 3:25–278 (in Japanese with English abstract)

    Google Scholar 

  • Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2006) World Ocean Atlas 2005, Volume 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 61. U.S. Government Printing Office, Washington, D.C

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Nakata K, Koyama S, Matsukawa Y (2001) Interannual variation in spring biomass and gut content composition of copepods in the Kuroshio current, 1971–89. Fish Oceanogr 10:329–341

    Article  Google Scholar 

  • Okuda K (1986) Occurrence of extremely low temperature in the coastal region of the Tohoku area associated with interannual variation of the Oyashio. Bull Tohoku Reg Fish Res Lab 48:87–96 (in Japanese with English abstract)

    Google Scholar 

  • Okunishi T, Yamanaka Y, Ito S (2009) A simulation model for Japanese sardine (Sardinops melanostictus) migrations in the western North Pacific. Ecol Model 220:462–479

    Article  Google Scholar 

  • Overland JE, Wang M (2007) Future Climate of the North Pacific Ocean. Eos Trans AGU 88(16). doi:10.1029/2007EO160003

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915

    Article  Google Scholar 

  • Peter RE, Crim LW (1979) Reproductive endocrinology of fishes: Gonadal cycles and gonadotropin in teleosts. Annu Rev Physiol 41:323–335

    Article  Google Scholar 

  • Sakamoto TT, Hasumi H (2008) Pacific upper ocean response to global warming–climate modeling in an eddying ocean regime. In: Hecht MW, Hasumi H (eds) Ocean Modeling in an Eddying Regime, Geophysical Monograph Series, Vol. 177. AGU, Washington D.C, pp 265–279

    Chapter  Google Scholar 

  • Sakamoto TT, Hasumi H, Ishii M, Emori S, Suzuki T, Nishimura T, Sumi A (2005) Responses of Kuroshio and Kuroshio Extension to global warming in a high-resolution climate model. Geophys Res Lett 32:L14617

    Article  Google Scholar 

  • Sarmiento JL (2004) Response of ocean ecosystems to climate warming. Global Biogeochem Cycles 18:GB3003. doi:10.1029/2003GB002134

    Article  Google Scholar 

  • Scheffer M, Baveco JM, DeAngelis DL, Rose KA, van Nes EH (1995) Super-individuals a simple solution for modelling large populations on an individual basis. Ecol Model 80:161–170

    Article  Google Scholar 

  • Takasuka A, Aoki I, Mitani I (2003) Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar Ecol Prog Ser 252:223–238

    Article  Google Scholar 

  • Takasuka A, Aoki I, Mitani I (2004) Three synergistic growth-related mechanisms in the short-term survival of larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar Ecol Prog Ser 270:217–228

    Article  Google Scholar 

  • Takasuka A, Aoki I, Oozeki Y (2007a) Predator-specific growth-selective predation on larval Japanese anchovy Engraulis japonicus. Mar Ecol Prog Ser 350:99–107

    Article  Google Scholar 

  • Takasuka A, Oozeki Y, Aoki I (2007b) Optimal growth temperature hypothesis: why do anchovy flourish and sardine collapse or vice versa under the same ocean regime? Can J Fish Aquat Sci 64:768–776

    Article  Google Scholar 

  • Takasuka A, Kubota H, Oozeki Y (2008) Spawning overlap of anchovy and sardine in the western North Pacific. Mar Ecol Prog Ser 366:231–244

    Article  Google Scholar 

  • Watanabe Y, Kuroki T (1997) Asymptotic growth trajectories of larval sardine (Sardinops melanostictus) in the coastal waters off western Japan. Mar Bio 127:369–378

    Article  Google Scholar 

  • Watanabe Y, Zenitani H, Kimura R (1995) Population decline of the Japanese sardine Sardinops melanostictus owing to recruitment failures. Can J Fish Aquat Sci 52:1609–1616

    Article  Google Scholar 

  • Watanabe Y, Zenitani H, Kimura R (1996) Offshore expansion of spawning of the Japanese sardine, Sardinops melanostictus, and its implication for egg and larval survival. Can J Fish Aquat Sci 53:55–61

    Article  Google Scholar 

  • Watanabe Y, Zenitani H, Kimura R (1997) Variations in spawning ground area and egg density of the Japanese sardine in Pacific coastal and oceanic waters. Fish Oceanogr 6:35–40

    Article  Google Scholar 

  • Yasuda I, Sugisaki H, Wanatabe Y, Minobe S, Oozeki Y (1999) Interdecadal variations in Japanese sardine and ocean/climate. Fish Oceanogr 8:18–24

    Article  Google Scholar 

  • Yatsu A, Watanabe T, Ishida M, Sugisaki H, Jacobson LD (2005) Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management. Fish Oceanogr 14:263–278

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a contribution to “Evaluation, Adaptation and Mitigation of Global Warming in Agriculture, Forestry and Fisheries: Research and Development” in the Agriculture Forestry and Fisheries Research Council (AFFRC) collaborating with “Marine Environmental Simulation Study for Future Projection of Marine Ecosystems” in the Core Research for Evolutional Science and Technology (CREST), promoted by the Japan Science and Technology Agency (JST). The climate simulations were conducted by the support of the Kyousei project—“Project for Sustainable Coexistence of Human, Nature, and the Earth”, which is produced by Ministry of Education, Culture, Sports, Science and Technology of Japan. Authors thank Prof. Kishi of Hokkaido University and Prof. Oozeki, Dr. Kubota and Dr. Takasuka of Fisheries Research Agency for their fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Okunishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okunishi, T., Ito, Si., Hashioka, T. et al. Impacts of climate change on growth, migration and recruitment success of Japanese sardine (Sardinops melanostictus) in the western North Pacific. Climatic Change 115, 485–503 (2012). https://doi.org/10.1007/s10584-012-0484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-012-0484-7

Keywords

Navigation