Skip to main content

Advertisement

Log in

Response of hydrological cycle to recent climate changes in the Tibetan Plateau

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The Tibetan Plateau (TP) surfaces have been experiencing an overall rapid warming and wetting while wind speed and solar radiation have been declining in the last three decades. This study investigated how climate changes influenced the hydrological cycle on the TP during 1984∼2006. To facilitate the analysis, a land surface model was used to simulate surface water budget at all CMA (China Meteorological Administration) stations on the TP. The simulated results were first validated against observed ground temperature and observation-derived heat flux on the western TP and observed discharge trends on the eastern TP. The response of evaporation and runoff to the climate changes was then analyzed. Major finding are as follows. (1) Surface water balance has been changed in recent decades. Observed precipitation shows insignificant increasing trends in central TP and decreasing trends along the TP periphery while evaporation shows overall increasing trends, leading to decreased discharge at major TP water resource areas (semi-humid and humid zones in the eastern and southern TP). (2) At the annual scale, evaporation is water-limited in dry areas and energy-limited (radiation and air temperature) in wet areas; these constraints can be interpreted by the Budyko-curve. Evaporation in autumns and winters was strongly controlled by soil water storage in summers, weakening the dependence of evaporation on precipitation at seasonal scales. (3) There is a complementary effect between the simulated actual evaporation and potential evaporation, but this complementary relationship may deviate from Bouchet’s hypothesis when vapor pressure deficit (or air temperature) is too low, which suppresses the power of vapor transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berezovskaya S, Yang D, Hinzman L (2005) Long-term annual water balance analysis of the Lena River. Glob Planet Change 48:84–95

    Article  Google Scholar 

  • Bouchet RJ (1963) Evapotranspiration reélle evapotranspiration potentielle, signification climatique. Int Assoc Sci Hydrol Publ 62:134–142. Berkeley California

    Google Scholar 

  • Brutsaert W, Parlange M (1998) Hydrologic cycle explains the evaporation paradox. Nature 396:30. doi:10.1038/23845

    Article  Google Scholar 

  • Budyko MI (1974) Climate and life. Academic, New York

    Google Scholar 

  • Cao JT, Qin DH, Kang ES, Li YY (2006) River discharge changes in the Qinghai-Tibet Plateau. Chin Sci Bull 51:594–600

    Article  Google Scholar 

  • Chattopadhyay N, Hulme M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agric For Meteorol 87:55–72

    Article  Google Scholar 

  • Chen SB, Liu YF, Thomas A (2006) Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Clim Change 76:291–319

    Article  Google Scholar 

  • Crawford TM, Duchon CE (1999) An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling long-wave radiation. J Appl Meteorol 38:474–480

    Article  Google Scholar 

  • Fuh BP (1981) On the calculation of the evaporation from land surface (in Chinese). Chinese J Atmos Sci 5:23–31

    Google Scholar 

  • Gao G, Chen DL, Xu CY, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960–2002. J Geophys Res 112:D11120. doi:10.1029/2006JD008010

    Article  Google Scholar 

  • Global Soil Data Task (2000) Global Gridded Surfaces of Selected Soil Characteristics (IGBPDIS), International Geosphere-Biosphere Programme—Data and Information Services. Oak Ridge National Laboratory, Oak Ridge, available online at: http://www.daac.ornl.gov/

  • Hobbins MT, Ramirez JA, TC Brown (2004) Trends in pan evaporation and actual evapotranspiration across the conterminous US: paradoxical or complementary? Geophys Res Lett 31:L13503. doi:10.1029/2004GL019846

    Article  Google Scholar 

  • Jiang Y, Yong Y, Zhao ZC, Tao SW (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol 99:421–430. doi:10.1007/s00704-009-0152-7

    Article  Google Scholar 

  • Kahler DM, Brutsaert W (2006) Complementary relationship between daily evaporation in the environment and pan evaporation. Water Resour Res 42:W05413. doi:10.1029/2005wr004541

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel W-A, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5:015101. doi:10.1088/1748-9326/5/1/015101

    Article  Google Scholar 

  • Kattsov VM, Walsh JE (2000) Twentieth-century trends of arctic precipitation from observational data and a climate model simulation. J Clim 13:1362–1370

    Article  Google Scholar 

  • Knyazikhin Y et al (1999) MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product, (MOD15). Algorithm theoretical basis document version 4.0. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf]

  • Li Q, Sun S, Dai Q (2009) The numerical scheme development of a simplified frozen soil model. Adv Atmos Sci 26:940–950

    Article  Google Scholar 

  • Liu B, Xu M, Henderson M, Gong W (2004) A spatial analysis of pan evaporation trends in China, 1955–2000. J Geophys Res 109:D15102. doi:10.1029/2004JD004511

    Article  Google Scholar 

  • Liu XD, Chen BD (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742

    Article  Google Scholar 

  • Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2001) Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int J Remote Sens 21:1303–1330

    Article  Google Scholar 

  • Ma, Y, Kang S, Zhu L, Xu B, Tian L, Yao T (2008) Tibetan Observation and Research Platform- Atmosphere–land interaction over a heterogeneous landscape. Bull Amer Meteor Soc 89:1487–1492

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Peterson TC, Golubev VS, Groisman PY (1995) Evaporation losing its strength. Nature 377:687–688

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Wea Rev 100:81–82

    Article  Google Scholar 

  • Qin J, Yang K, Liang SL, Guo XF (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97:321–327

    Article  Google Scholar 

  • Ramírez JA, Hobbins MT, Brown TC (2005) Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophys Res Lett 32:L15401. doi:10.1029/2005GL023549

    Article  Google Scholar 

  • Roderick ML, Farquhar GD (2004) Changes in Australian pan evaporation from 1970 to 2002. Int J Climatol 24:1077–1090

    Article  Google Scholar 

  • Ross PJ (2003) Modeling soil water and solute transport—fast, simplified numerical solutions. Agron J 95:1352–1361

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs, Part I: model formulation. J Climate 9:676–705

    Article  Google Scholar 

  • Shuttleworth WJ (1993) Evaporation. In: Maidment DR (ed) Handbook of hydrology, Chap. 4. McGraw-Hill, New York, pp 4.1–4.53

    Google Scholar 

  • Tian L, Yao T, Li Z, MacClune K, Wu G, Xu B, Li Y, Lu A, Shen Y (2006) Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. J Geophys Res 111:D13103. doi:10.1029/2005JD006249

    Article  Google Scholar 

  • Watanabe T, Kondo J (1990) The influence of canopy structure and density upon the mixing length within and above vegetation. J Meteorol Soc Jpn 68:227–235

    Google Scholar 

  • Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at earth’s surface. Science 308:847–850. doi:10.1126/science.1103215

    Article  Google Scholar 

  • Wild M, Grieser J, Schär C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706. doi:10.1029/2008GL034842

    Article  Google Scholar 

  • Xu M, Chang CP, Fu C, Qi Y, Robock A, Robinson D, Zhang H (2006) Steady decline of East Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res 111:D24111. doi:10.1029/2006JD007337

    Article  Google Scholar 

  • Yang K, Koike T, Ye B (2006) Improving estimation of hourly, daily, and monthly downward shortwave radiation by importing global data sets. Agric Forest Meteorol 137:43–55

    Article  Google Scholar 

  • Yang K, Koike T, Ishikawa H, Kim J, Li X, Liu H, Liu S, Ma Y, Wang J (2008) Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization. J Appl Meteorol Clim 40:276–290

    Article  Google Scholar 

  • Yang K, Chen YY, Qin J (2009a) Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci 13:687–701

    Article  Google Scholar 

  • Yang K, Qin J, Guo XF, Zhou DG, Ma Y (2009b) Method development for estimating sensible heat flux over the Tibetan Plateau from CMA data. J Appl Meteorol Clim 48:2474–2486

    Article  Google Scholar 

  • Yang K, He J, Tang WJ, Qin J, Cheng CK (2010) On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric Forest Meterol 150:38–46

    Article  Google Scholar 

  • Ye B, Yang D, Ding Y, Han T, Koike T (2004) A bias-corrected precipitation climatology for China. J Hydrometeorol 5:1147–1160

    Article  Google Scholar 

  • Ye Q, Zhu L, Zheng H, Naruse R, Zhang X, Kang S (2007) Glacier and lake variations in the Yamzhog Yumco Basin in the last two decades using remote sensing and GIS technologies. J Glaciol 53:673–676

    Article  Google Scholar 

  • Yu J, Zhang Y, Liu C (2009) Validity of the Bouchet’s complementary relationship at 102 observatories across China. Sci China Ser D-Earth Sci 52:708–713

    Article  Google Scholar 

  • Zhang Y, Liu C, Tang Y, Yang Y (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J Geophys Res 112:D12110. doi:10.1029/2006JD008161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Ye, B., Zhou, D. et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change 109, 517–534 (2011). https://doi.org/10.1007/s10584-011-0099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0099-4

Keywords

Navigation