Skip to main content

Advertisement

Log in

Climate change links fate of glaciers and an endemic alpine invertebrate

A letter

  • Letter
  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Climate warming in the mid- to high-latitudes and high-elevation mountainous regions is occurring more rapidly than anywhere else on Earth, causing extensive loss of glaciers and snowpack. However, little is known about the effects of climate change on alpine stream biota, especially invertebrates. Here, we show a strong linkage between regional climate change and the fundamental niche of a rare aquatic invertebrate—the meltwater stonefly Lednia tumana—endemic to Waterton-Glacier International Peace Park, Canada and USA. L. tumana has been petitioned for listing under the U.S. Endangered Species Act due to climate-change-induced glacier loss, yet little is known on specifically how climate impacts may threaten this rare species and many other enigmatic alpine aquatic species worldwide. During 14 years of research, we documented that L. tumana inhabits a narrow distribution, restricted to short sections (~500 m) of cold, alpine streams directly below glaciers, permanent snowfields, and springs. Our simulation models suggest that climate change threatens the potential future distribution of these sensitive habitats and the persistence of L. tumana through the loss of glaciers and snowfields. Mountaintop aquatic invertebrates are ideal early warning indicators of climate warming in mountain ecosystems. Research on alpine invertebrates is urgently needed to avoid extinctions and ecosystem change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Baumann RW, Kondratieff BC (2010) The stonefly genus Lednia in North America (Plecoptera: Nemouridae). Illiesia 6(25):315–327

    Google Scholar 

  • Brown LE, Hannah DM, Milner AM (2007) Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Glob Change Biol 13:958–966

    Article  Google Scholar 

  • Brown J, Harper J, Humphrey N (2010) Cirque glacier sensitivity to 21st century warming: Sperry Glacier, Rocky Mountains, USA. Glob Planet Change 74:91–98

    Article  Google Scholar 

  • Brown LE, Céréghino R, Compin A (2009) Endemic freshwater invertebrates from southern France: diversity, distribution and conservation implications. Biol Conserv 142:2613–2619

    Article  Google Scholar 

  • Donald DB, Anderson RS (1977) Distribution of the stoneflies (Plecoptera) of the Waterton River Drainage, Alberta, Canada. Syesis 10:113–120

    Google Scholar 

  • Finn DS, Räsänen K, Robinson CT (2010) Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. Glob Change Biol 16:3314–3326

    Article  Google Scholar 

  • Gaufin AR, Ricker WE, Miner M, Milam P, Hays RA (1977) The stonflies (Plecoptera) of Montana. Trans Am Entomol Soc 98:31–32

    Google Scholar 

  • Hall MHP, Fagre DB (2003) Modeled climate-induced glacier change in Glacier National Park, 1850–2100. Bioscience 53(2):131–140

    Article  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435. doi:10.1126/science.1110252

    Article  Google Scholar 

  • Hauer FR, Resh VH (2006) Macroinvertebrates. Methods in stream ecology 2nd edn. Academic, New York

    Google Scholar 

  • Hauer FR, Stanford JA (1981) Larval specialization and phenotypic variation in Arctopsyche grandis (Trichoptera: Hydropsychidae). Ecology 62(3):645–653

    Article  Google Scholar 

  • Hauer FR, Baron JS, Campbell DH, Fausch KD, Hostetler SW, Leavesley GH, Leavitt PR, Mcknight DM, Stanford JA (1997) Assessment of climate change and freshwater ecosystems of the Rocky Mountains, USA and Canada. Hydrol Process 11(8):903–924

    Article  Google Scholar 

  • Hauer FR, Stanford JA, Lorang MS (2007) Pattern and process in northern Rocky Mountain headwaters: ecological linkages in the headwaters of the Crown of the Continent. J Am Water Resour Assoc 43 (1):104–117

    Article  Google Scholar 

  • Hop K, Reid M, Dieck J, Lubinski S, Cooper S (2007) US Geological Survey-National Park service vegetation mapping program: Waterton-Glacier International Peace Park. US Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin

    Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobsen D, Dangles O, Andino P, Espinosa R, Hamerlík L, Cadier E (2009) Longitudinal zonation of macroinvertebrates in an Ecuadorian glacier-fed stream: do tropical glacial systems fit the temperate model? Freshw Biol 55:1234–1248

    Article  Google Scholar 

  • La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B 277:3401–3410

    Article  Google Scholar 

  • Lowe WH, Hauer FR (1999) Ecology of two large, net-spinning caddisfly species in a mountain stream: distribution, abundance and metabolic response to a thermal gradient. Can J Zool 77:1637–1644

    Article  Google Scholar 

  • Milner AM, Brittain JE, Castella E, Petts GE (2001) Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshw Biol 46:1833–1847

    Article  Google Scholar 

  • Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecolog Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  Google Scholar 

  • Pederson GT, Graumlich LJ, Fagre DR, Kipfer T, Muhlfeld CC (2010) A century of climate and ecosystem change in Western Montana: what do temperature trends portend? Clim Change 98(1):133–154

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  Google Scholar 

  • Rauscher SA, Pal JS, Diffenbaugh NS, Benedetti MM (2008) Future changes in snowmelt-driven runoff timing over the western US. Geophys Res Lett 35(16):L16703. doi:10.1029/2008gl034424

    Article  Google Scholar 

  • Ricker WE (1952) Systematic studies of Plecoptera. Indiana University Publishing Science Services 18:1–200

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421(6918):57–60

    Article  Google Scholar 

  • Stewart KW, Stark BP (2002) Nymphs of North American stonefly genera, vol xii, 2nd edn. Caddis, Columbus

    Google Scholar 

  • Surber EW (1937) Rainbow trout and bottom fauna production in one mile of stream. Trans Am Fish Soc 66:193–202

    Article  Google Scholar 

  • Trivedi MR, Berry PM, Morecroft MD, Dawson TP (2008) Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob Change Biol 14:1089–1103. doi:10.1111/j.1365-2486.2008.01553.x

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  Google Scholar 

  • Ward JV (1994) Ecology of alpine streams. Freshw Biol 32:277–294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clint C. Muhlfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhlfeld, C.C., Giersch, J.J., Hauer, F.R. et al. Climate change links fate of glaciers and an endemic alpine invertebrate. Climatic Change 106, 337–345 (2011). https://doi.org/10.1007/s10584-011-0057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-011-0057-1

Keywords

Navigation