Skip to main content

Advertisement

Log in

Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Potential evapotranspiration models very often are important part of hydrological catchment models to calculate potential evapotranspiration (PET) which then is used to estimate actual evapotranspiration considering the soil moisture status. As many different approaches exist, the question arises in which way the choice of the PET model affects the impact of climate change on the calculated water balance? Therefore, 18 different PET models were compared with respect to their sensitivity to observed climate change. Long-term climate data of six German climate stations were used to identify changes in the climate data itself and changes in the calculated PET. The results show that all investigated PET models are sensitive to significant trends in climate data. However, it is also shown that all models show different sensitivities, and that the sensitivities cannot be grouped in terms of different types of PET models such as the aerodynamic concept, radiation or temperature based approaches and combination equations. Predominantly, the variability within a group of models of the same type is comparable to the variability between different model types. Therefore it can be concluded that PET models should be validated in a regional context before they are applied to a certain region within a climate change study despite the poor availability of long-term PET measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht F (1950) Die Methoden zur Bestimmung Verdunstung der natürlichen Erdoberfläche. Arch MeteorGeoph Biokl Ser B 2:1–38

    Article  Google Scholar 

  • Amataya DM, Skaggs RW, Gregory JD (1995) Comparison of methods for estimating REF-ET. J Irrig Drain E-ASCE 121(6):427–435

    Article  Google Scholar 

  • Andreassian V, Perrin C, Michel C (2004) Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models. J Hydrol 286:19–35

    Article  Google Scholar 

  • Arnell NW, Reynard N (1993) Impact of climate change on river flow regimes in the United Kingdom. Institute of Hydrology Report to DOE, Water Directorate

  • Blaney HF, Criddle WD (1950) Determining water requirements in irrigated areas from climatological and irrigation data. USDA Soil Conservation Service Tech Paper 96, 48 pp

  • Bormann H, Diekkrüger B, Richter O (1996) Effects of data availability on estimation of evapotranspiration. Phys Chem Earth 21(3):171–175

    Article  Google Scholar 

  • Braden H (1995) The model AMBETI—a detailed description of a soil–plant–atmosphere model. Berichte des Deutschen Wetterdienstes 195, Offenbach, 117 pp

  • Brockamp B, Wenner H (1963) Verdunstungsmessungen auf den Steiner See bei Münster. Dt Gewässerkundl Mitt 7:149–154

    Google Scholar 

  • Castaneda L, Rao P (2005) Comparison of methods for estimating reference evapotranspiration in southern California. J Environ Hydrol 13(14):1–10

    Google Scholar 

  • Clapeyron E (1834) Puissance motrice de la chaleur. Journal de l’École Royale Polytechnique. Vingt-troisième cahier, Tome XIV:153–190

    Google Scholar 

  • Dalton J (1802) Experimental essays on the constitution of mixed gases; on the force of steam of vapour from waters and other liquids in different temperatures, both in a torricellian vacuum and in air on evaporation and on the expansion of gases by heat. Mem Manch Lit Phil Soc 5:535–602

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) CropWater Requirements. Irrigation and Drainage Paper 24, FAO. Rome, Italy. 144 pp

  • FAO (1990) Report on the export consultation on revision of FAO methodologies for crop water requirements. Land and Water Devel. Div., Rome, Italy

  • Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Simulations Monograph, Pudoc

  • Federer CA, Vörösmarty C, Fekete B (1996) Intercomparison of methods for calculating potential evaporation in regional and global water balance models. Water Resour Res 32(7):2315–2321

    Article  Google Scholar 

  • Haude W (1955) Zur Bestimmung der Verdunstung auf möglichst einfache Weise. Mitt Dt Wetterd 2(11). Bad Kissingen

  • Hounam CE (1971) Problems of evaporation assessment in the water balance. Report No. 3 on WMO/IHD Project, WMO, Geneva

  • IPCC (2007) Climate Change 2007—the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press. 996 pp

  • Jensen ME, Haise HR (1963) Estimating evapotranspiration from solar radiation. J Irrig Drain Div ASCE 89:15–41

    Google Scholar 

  • Jensen ME, Burman RD, Allen RG (Eds) (1990) Evapotranspiration and irrigation water requirements. ASC Manuals and Reports on Engineering Practice No. 70. 332 pp

  • Jensen DT, Hargreaves GH, Temesgen B, Allen RG (1997) Computation of ET0 under nonideal conditions. J Irrig Drain E-ASCE 123(5):394–400

    Article  Google Scholar 

  • Kashyap PS, Panda RK (2001) Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agric Water Manag 50:9–25

    Article  Google Scholar 

  • Krysanova V, Buiteveld H, Haase D, Hattermann FF, van Niekerk K, Roest K, Martinez-Santos P, Schlüter M (2008) Practices and lessons learned in coping with climatic hazards at the river-basin scale: floods and drought. Ecol Soc 13(2):32. [online] Available at: http://www.ecologyandsociety.org/vol13/iss2/art32/

    Google Scholar 

  • Löpmeier FJ (1983) Ein Agrarmeteorologischens Modell zur Berechung der Aktuellen Verdunstung (AMBAV). Beiträge zur Agrarmeteorologie 7/83. ZAMF, Braunschweig, 50 pp

  • Lu J, Sun G, McNulty SG, Amatya DM (2005) A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. J Am Water Resour As 41(3):621–633

    Article  Google Scholar 

  • Mahringer W (1970) Verdunstungsstudien am Neusiedler See. Arch Met Geoph Biokl Ser B 18:1–20

    Article  Google Scholar 

  • McKenney MS, Rosenberg NJ (1993) Sensitivity of some potential evapotranspiration estimation methods to climate change. Agr Forest Metorol 64:81–110

    Article  Google Scholar 

  • Meyer A (1926) Über einige Zusammenhänge zwischen Klima und Boden in Europa. Chemie der Erde 2:209–347

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Fogy GT (ed) The state and movement of water in living organism. Cambridge, pp 205–234

  • Oudin L, Hervieu F, Michel C et al (2005) Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J Hydrol 303:290–306

    Article  Google Scholar 

  • Penman HC (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser A 193:120–145

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evapotranspiration using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Rijtema PE (1968) Derived meteorological data: transpiration. Unesco Nat Res Res 7:55–72. Paris

    Google Scholar 

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  • Robert G (1998) The effects of possible future climate change on evaporation losses from four contrasting UK water catchment areas. Hydrol Process 12:727–739

    Article  Google Scholar 

  • Schendel U (1967) Vegetationswasserverbrauch und -wasserbedarf. Habilitation, Kiel, 137 pp

  • Schönwiese CD (1999) Das Klima der jüngeren Vergangenheit. Physik in unserer Zeit 30(3):94–101

    Article  Google Scholar 

  • Schrödter H (1985) Verdunstung. Anwendungsorientierte Messverfahren und Bestimmungsmethoden. Springer Berlin, 186 pp

    Google Scholar 

  • Singh VP, Xu CY (1997a) Evaluation and generalization of 13 mass-transfer equations for determining free-water evaporation. Hydrol Process 11:311–323

    Article  Google Scholar 

  • Singh VP, Xu CY (1997b) Sensitivity of mass transfer-based evaporation equations to errors in daily and monthly input data. Hydrol Process 11:1465–1473

    Article  Google Scholar 

  • Temesgen B, Eching S, Davidoff B, Frame K (2005) Comparison of some reference evapotranspiration equations for California. J Irrig Drain E-ASCE 131(1):73–84

    Article  Google Scholar 

  • Trabert W (1896) Neue Beobachtungen über Verdampfungsgeschwindigkeiten. Meteorol Z 13:261–263

    Google Scholar 

  • Trajkovic S (2007) Hargreaves versus Penman–Monteith under humid conditions. J Irrig Drain E-ASCE 133(1):38–42

    Article  Google Scholar 

  • Turc L (1961) Evaluation des besoins en eau irrigation, l’evapotranspiration potentielle. Ann Agron 12:13–49

    Google Scholar 

  • Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modelling. J Hydrol 207:147–169

    Article  Google Scholar 

  • Weiß M, Menzel L (2008) A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Adv Geosci 18:15–23

    Article  Google Scholar 

  • WMO (1966) Measurement and estimation of evaporation and evapotranspiration. Tech Pap (CIMO-Rep) 83. Genf

  • Xu CY, Chen D (2005) Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrol Process 19:3717–1734

    Google Scholar 

  • Xu CY, Singh VP (2000) Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrol Process 14:339–349

    Article  Google Scholar 

  • Xu CY, Singh VP (2001) Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol Process 15:305–319

    Article  Google Scholar 

  • Xu CY, Singh VP (2002) Cross comparison of Empirical Equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manag 16:197–219

    Article  Google Scholar 

  • Yoder RE, Odhiambo LO, Wright WC (2005) Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States. Appl Eng Agric 21(2):197–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Bormann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormann, H. Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations. Climatic Change 104, 729–753 (2011). https://doi.org/10.1007/s10584-010-9869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9869-7

Keywords

Navigation