Skip to main content

Advertisement

Log in

Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In this paper we study an isolated high-mountain (Sierra Nevada, SE Iberian Peninsula) to identify the potential trends in the habitat-suitability of five key species (i.e. species that domain a given vegetation type and drive the conditions for appearance of many other species) corresponding to four vegetation types occupying different altitudinal belts, that might result from a sudden climatic shift. We used topographical variables and downscaled climate warming simulations to build a high-resolution spatial database (10 m) according to four different climate warming scenarios for the twenty-first century. The spatial changes in the suitable habitat were simulated using a species distribution model, in order to analyze altitudinal shifts and potential habitat loss of the key species. Thus, the advance and receding fronts of known occurrence locations were computed by introducing a new concept named differential suitability, and potential patterns of substitution among the key species were established. The average mean temperature trend show an increase of 4.8°C, which will induce the vertical shift of the suitable habitat for all the five key species considered at an average rate of 11.57 m/year. According to the simulations, the suitable habitat for the key species inhabiting the summit area, where most of the endemic and/or rare species are located, may disappear before the middle of the century. The other key species considered show moderate to drastic suitable habitat loss depending on the considered scenario. Climate warming should provoke a strong substitution dynamics between species, increasing spatial competition between both of them. In this study, we introduce the application of differential suitability concept into the analysis of potential impact of climate change, forest management and environmental monitoring, and discuss the limitations and uncertainties of these simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626

    Article  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11(9):1504–1513

    Article  Google Scholar 

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19

    Article  Google Scholar 

  • Benito Garzón M, Sánchez de Dios R, Sáinz-Ollero H (2008) Effects of climate change on the distributions of Iberian forests. Appl Veg Sci 11:169–178

    Article  Google Scholar 

  • Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biol Conserv 85:269–285

    Article  Google Scholar 

  • Broenninmann O, Thuiller W, Hughes G, Midgley GF, Alkemade JMR, Guisan A (2006) Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Change Biol 12:1079–1093

    Article  Google Scholar 

  • Brunet M, Casado MJ, Castro M, Galan P, Lopez JA, Martín JM, Pastor A, Petisco E, Ramos P, Ribalaygua J, Rodriguez E, Torres L (2007) Generación de escenarios regionalizados de cambio climático para España. Ministry of Environment, Government of Spain, Madrid

    Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM, Gómez-Aparicio L (2004) Benefits of using shrubs as nurse plants for reforestation in Mediterranean mountains: a 4-year study. Restor Ecol 12(3):352–358

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptative responses to quaternary climate change. Science 292:673–679

    Article  Google Scholar 

  • Douglas T, Critchley D, Park G (1996) The deintensification of terraced agricultural land near Trevélez, Sierra Nevada. Spain. Glob Ecol Biogeogr 5(4/5):258–270

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudık M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcC, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Fitzpatrick M, Gove A, Sanders NJ, Dunn RR (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Glob Change Biol 14:1337–1352

    Article  Google Scholar 

  • Flato GM, Boer GJ (2001) Warming asymmetry in climate change simulations. Geophys Res Lett 28:195–198

    Article  Google Scholar 

  • García D, Zamora R, Hódar JA, Gómez JM (1999) Age structure of Juniperus communis L. in the Iberian peninsula: conservation of remnant populations in mediterranean mountains. Biol Conserv 87(2):215–220

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Climate 10:288–296

    Article  Google Scholar 

  • Gómez JM, García D, Zamora R (2003) Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. For Ecol Manag 180:125–134

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  Google Scholar 

  • GRASS Development Team (2008) Geographic Resources Analysis Support System (GRASS) software, version 6.3.0. http://grass.osgeo.org

  • Guisan A, Thuiller W (2006) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  Google Scholar 

  • Hulme M, Sheard N (1999) Climate change scenarios for the Iberian Peninsula. Climatic Research Unit, Norwich, UK

    Google Scholar 

  • IPCC, Third Special Report (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jaynes ET (1957) Information Theory and Statistical Mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199

    Article  Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shurb species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Lamont BB, Connell SW (1996) Biogeography of Banksia in southwestern Australia. J Biogeogr 23:295–309

    Article  Google Scholar 

  • Lorite J, Gómez F, Mota JF, Valle F (2007a) Orophilous plant communities of Baetic range in Andalusia (south-eastern Spain): priority altitudinal-islands for conservation. Phytocoenologia 37(3–4):625–644

    Article  Google Scholar 

  • Lorite J, Navarro FB, Valle F (2007b) Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosyst 141(1):1–14

    Google Scholar 

  • Lorite J, Salazar C, Peñas J, Valle F (2008) Phytosociological review on the forests of Quercus pyrenaica Willd. Acta Bot Gall 155(2):219–233

    Google Scholar 

  • Mann ME (2007) Climate over the past two millennia. Annu Rev Earth Planet Sci 35:11–136

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Northern Hemisphere during the past millennium: inferences, uncertainties and limitations. Geophys Res Lett 26(6):759–762

    Article  Google Scholar 

  • Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 13(6):1510–1513

    Article  Google Scholar 

  • Mitchell TD, Hulme M (1999) Predicting regional climate change: living with uncertainty. Prog Phys Geogr 23(1):57–78

    Google Scholar 

  • Murphy J (2000) Predictions of climate change over Europe using statistical and dynamical downscaling techniques. Int J Climatol 20:489–501

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Nogués-Bravo D, Araújo MB, Lasanta T, López Moreno JI (2008) Climate change in Mediterranean mountains during the 21st century. Ambio 37:280–285

    Article  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23(3):149–158

    Article  Google Scholar 

  • Phillips S, Dudik M (2008) Modelling of species distribution with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Phillips S, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc Lond 268:2383–2389

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dumenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max Planck Institute Report 218, Hamburg, Germany

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  Google Scholar 

  • Thomas CD, Franco AM, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Article  Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB, Sykes M, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102(23):8245–8250

    Article  Google Scholar 

  • Wardle P, Coleman MC (1992) Evidence of rising upper limits of four native New Zealand forest trees. N Z J Bot 30:303–314

    Google Scholar 

  • Williams PH, Hannah L, Andelman S, Midgley G, Araújo MB, Hughes G, Manne L, Martinez-Meyer E, Pearson C (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape Proteaceae. Conserv Biol 19:1063–1074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blas Benito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benito, B., Lorite, J. & Peñas, J. Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change 108, 471–483 (2011). https://doi.org/10.1007/s10584-010-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-0015-3

Keywords

Navigation