Skip to main content

Advertisement

Log in

A low-level jet along the Benguela coast, an integral part of the Benguela current ecosystem

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The Benguela Current Ecosystem of Southern Africa is the strongest wind-driven coastal upwelling system known. This is one of the most productive ocean areas in the world, extremely rich in fishery resources with a total catch in excess of one million tons per annum. Marine life off the coast relies heavily on the nutrient-rich upwellings of the cold Benguela current. Warming events occur along this coast in association with many El Niños. These tremendously disrupt the coastal ecosystem, reducing productivity and devastating the anchovy and sardine fisheries. This article demonstrates for the first time the existence of a low-level atmospheric jet along the Benguela Coast of the southeastern Atlantic. Blowing parallel to the coast, this jet drives the coastal upwelling system and is part of a mechanism that links Pacific El Niño events to Southern Africa. The existence of such a jet has tremendous implications for the Benguela current and its response to climatic variability and change because a positive feedback exists between the intensity of this jet and the intensity of coastal upwelling. This may enhance the response of the Benguela Current Ecosystem to climatic variability, making it particularly susceptible to the impacts of global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. Science 247:198–201

    Article  Google Scholar 

  • Balas N, Nicholson SE, Klotter D (2007) The relationship of rainfall variability in West central Africa to sea-surface temperature fluctuations. Int J Climatol 27:1335–1349

    Article  Google Scholar 

  • Beardsley RC, Dorman CE, Friehe CA, Rosenfield LK, Winant CD (1987) Local atmospheric forcing during the Coastal Ocean Dynamics Experiment I: a description of the marine boundary layer and atmospheric conditions over a northern California upwelling region. J Geophys Res 92:1467–1488

    Article  Google Scholar 

  • Binet D, Gobert B, Maloueki L (2001) El Niño-like warm events in the Eastern Atlantic (6° N, 20° S) and fish availability from Congo to Angola (1964–1999). Aquat Living Resour 14:99–113

    Article  Google Scholar 

  • Bourassa MA, Legler DM, O’Brien JJ, Smith SR (2003) SeaWinds validation with research vessels. J Geophys Res 108:3019. doi:10.1029/2001JC001081

    Article  Google Scholar 

  • Burk SD, Thompson WT (1996) The summertime low-level jet and marine boundary layer structure along the California coast. Mon Weather Rev 124:668–686

    Article  Google Scholar 

  • Carton JA, Huang B (1994) Warm events in the tropical Atlantic. J Phys Oceanogr 24:888–903

    Article  Google Scholar 

  • Colberg F, Reason CJC, Rodgers K (2004) South Atlantic response to El Niño-Southern oscillation induced climate variability in an ocean general circulation model. J Geophys Res 109. doi:10.1029/2004JCO02301

    Google Scholar 

  • Covey DL, Hastenrath S (1978) The Pacific El Niño phenomenon and the Atlantic circulation. Mon Weather Rev 106:1280–1286

    Article  Google Scholar 

  • Delecluse P, Servain J, Levy C, Arpe K, Bengsston L (1994) On the connection between the 198 Atlantic warm event and the 1982–1983 ENSO. Tellus 46a:448–464

    Google Scholar 

  • Douglas MW (1995) The summertime low-level jet over the gulf of California. Mon Weather Rev 123:2334–2347

    Article  Google Scholar 

  • Findlater I (1969) A major low-level air current near the Indian Ocean during the northern summer. Q J R Meteorol Soc 95:362–380

    Article  Google Scholar 

  • Florenchie P, Reason CJC, Lutjeharms JRE et al (2004) Evolution of interannual warm and cold events in the Southeast Atlantic Ocean. J Cimate 17:2318–2334

    Article  Google Scholar 

  • Gammelsrød T, Bartholomae CH, Boyer DC, Filipe VLL, O’Toole MJ (1998) The 1995 Benguela Niño. S Afr J Mar Sci 19:41–56

    Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  Google Scholar 

  • Goddard L, Graham NE (1999) Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J Geophys Res 104(D16):19,099–19,116

    Article  Google Scholar 

  • Grist JP, Nicholson SE (2001) A study of the dynamic factors influencing the interannual variability of rainfall in the West African Sahel. J Climate 14:1337–1359

    Article  Google Scholar 

  • Grodsky SA, Carton JA, Nigam S (2003) Near surface westerly wind jet in the Atlantic ITCZ. Geophys Res Lett 30:2009. doi:10:1029/2003GL017867

    Article  Google Scholar 

  • Höflich O (1984) Climate of the South Atlantic Ocean. In: van Loon H (ed) Climates of the oceans. World survey of climatology, vol 15. Elsevier, Amsterdam, pp 1–195

    Google Scholar 

  • Holt TR (1996) Mesoscale forcing of a boundary layer jet along California coast. J Geophys Res 101:4235–4254

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kinter JL III, Fennessy MJ, Krishnamurthy V, Marx L (2004) An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP-NCAR reanalysis. J Climate 17:349–361

    Article  Google Scholar 

  • Lamb PJ, Peppler RA (1992) Further case studies of Tropical Atlantic surface atmospheric and oceanic patterns associated with sub-Saharan drought. J Climate 5:476–488

    Article  Google Scholar 

  • Lettau H (1978) Explaining the world’s driest climate. In: Lettau HH, Lettau K (eds) Exploring the world’s driest climate. University of Wisconsin, Madison, pp 182–248

  • Mote PW, Mantua NJ (2002) Coastal upwelling in a warmer future. Geophys Res Lett 29. doi:10.1029/2002GL016086

    Google Scholar 

  • Neiburger M, Johnson DS, Chien CW (1961) Studies of the structure of the atmosphere over the eastern Pacific Ocean in the summer. The inversion over the Eastern Pacific Ocean. University of California Press, pp 1–94

  • Nicholson SE (1997) An analysis of the ENSO signal in the tropical Atlantic and western Indian Oceans. Int J Climatol 17:345–375

    Article  Google Scholar 

  • Nicholson SE, Entekhabi D (1987) Rainfall variability in equatorial and Southern Africa: relationships with sea-surface temperatures along the southwestern coast of Africa. J Clim Appl Meteorol 26:561–578

    Article  Google Scholar 

  • Nicholson SE, Entekhabi D (1996) The quasi-periodic behavior of rainfall variability in Africa and its relationship to the southern oscillation. Arch Meteorol Geophys Bioclimatol 34:311–348

    Article  Google Scholar 

  • Nicholson SE, Grist JP (2001) A simple conceptual model for understanding rainfall variability in theWest African Sahel on interannual and interdecadal time scales. Int J Climatol 21:1733–1757

    Article  Google Scholar 

  • Nicholson SE, Grist JP (2002) On the seasonal evolution of atmospheric circulation over West Africa and Equatorial Africa. J Climate 16:1013–1030

    Article  Google Scholar 

  • Nicholson SE, Kim J (1997) The relationship of the el Niño-Southern oscillation to African rainfall. Int J Climatol 17:117–135

    Article  Google Scholar 

  • Nicholson SE, Webster PJ (2007) A physical basis for the interannual variability of rainfall in the Sahel. Quart J Royal Meteorol Soc 133:2065–2084

    Article  Google Scholar 

  • Parish T (2000) Forcing of the summer low-level jet along the California coast. J Appl Meteorol 39:2421–2433

    Article  Google Scholar 

  • Poccard I, Janicot S, Camberlin P (2000) Comparison of rainfall structures between NCEP/NCAR reanalysis and observed data over tropical Africa. Clim Dyn 16:897–915

    Article  Google Scholar 

  • Reason CJC, Rouault M (2006) Sea surface temperature variability in the tropical southeast Atlantic Ocean and West African rainfall. Geophys Res Lett 33:L21705. doi:10.1029/2006GL027145

    Article  Google Scholar 

  • Reason CJC, Landman W, Tennant W (2006) Seasonal to decadal prediction of Southern African climate and its links with variability of the Atlantic Ocean. Bull Am Meteorol Soc 87:941–955

    Article  Google Scholar 

  • Riehl H (1979) Climate and weather in the tropics. Academic, New York, p 611

    Google Scholar 

  • Risien CM, Reason CJC, Shillington FA (2004) Variability in satellite winds over the Benguela upwelling system. J Geophys Res 10. doi:10.1029/2003JC001880

    Google Scholar 

  • Rouault M, Florenchie P, Fauchereau N, Reason CJC (2003) South East tropical Atlantic warm events and southern African rainfall. Geophys Res Lett 30(5):8009. doi:10.1029/2002GL014840

    Article  Google Scholar 

  • Roux JP (2003) Namibia’s marine environment. In: Molloy F, Reinikainen R (eds) Directorate of environmental affairs. Ministry of Environment and Tourism, Namibia, p 160

    Google Scholar 

  • Shannon LV, Boyd AJ, Brundrit GB, Taunton-Clark J (1986) On the existence of an El Niño-type phenomenon in the Benguela system. J Mar Res 44:495–520

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Climate 17:2466–2477

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–696

    Article  Google Scholar 

  • Uccellini LW, Johnson DR (1979) The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon Weather Rev 107:682–703

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart J Royal Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Webster PJ, Hoyos C (2004) Prediction of monsoon rainfall and river discharge on 15–30 day time scales. Bull Am Meteorol Soc 85(11):1745–1765

    Article  Google Scholar 

  • Winant CD, Dorman CE, Friehe CA, Beardsley RC (1988) The marine layer off northern California: an example of supercritical channel flow. J Atmos Sci 45:3588–3605

    Article  Google Scholar 

  • Zemba J, Friehe CA (1987) The marine boundary layer jet in the coastal ocean dynamics experiment. J Geophys Res 92:1489–1496

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon E. Nicholson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, S.E. A low-level jet along the Benguela coast, an integral part of the Benguela current ecosystem. Climatic Change 99, 613–624 (2010). https://doi.org/10.1007/s10584-009-9678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9678-z

Keywords

Navigation