Skip to main content
Log in

Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Changes in climate as projected by state-of-the-art climate models are likely to result in novel combinations of climate and topo-edaphic factors that will have substantial impacts on the distribution and persistence of natural vegetation and animal species. We have used multivariate techniques to quantify some of these changes; the method employed was the Multivariate Spatio-Temporal Clustering (MSTC) algorithm. We used the MSTC to quantitatively define ecoregions for the People’s Republic of China for historical and projected future climates. Using the Köppen–Trewartha classification system we were able to quantify some of the temperature and precipitation relationships of the ecoregions. We then tested the hypothesis that impacts to environments will be lower for ecoregions that retain their approximate geographic locations. Our results showed that climate in 2050, as projected from anthropogenic forcings using the Hadley Centre HadCM3 general circulation model, were sufficient to create novel environmental conditions even where ecoregions remained spatially stable; cluster number was found to be of paramount importance in detecting novelty. Continental-scale analyses are generally able to locate potentially static ecoregions but they may be insufficient to define the position of those reserves at a grid cell-by-grid cell basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey RG (1996) Ecosystem geography. Springer, New York

    Google Scholar 

  • Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39:200–209

    Article  Google Scholar 

  • Box EO (1981) Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Dr. W. Junk Publishers, The Hague

    Google Scholar 

  • Chang DHS (1981) The vegetation zonation of the Tibetan Plateau. Mt Res Dev 1:29–48

    Article  Google Scholar 

  • Chang DHS (1983) The Tibetan Plateau in relation to the vegetation of China. Ann Mo Bot Gard 70:564–570

    Article  Google Scholar 

  • Chen X, Zhang X-S, Li B-L (2003) The possible response of life zones in China under global climate change. Glob Planet Change 38:327–337

    Article  Google Scholar 

  • Coulston JW, Riitters KH (2005) Preserving biodiversity under current and future climates: a case study. Glob Ecol Biogeogr 14:31–38

    Article  Google Scholar 

  • Cubash U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda CA, Senior CA, Raper S, Yap KS (2001) Projections of future change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge

    Google Scholar 

  • Daly C, Neilson RP, Phillips DL (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J Appl Meteorol 33:140–158

    Article  Google Scholar 

  • Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22:99–113

    Article  Google Scholar 

  • Diaz HF, Eischeid JK (2007) Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophys Res Lett 34:L18707. doi:10.1029/2007GL031253

    Article  Google Scholar 

  • Diaz HF, Eischeid JK, Duncan C, Bradley RS (2003) Variability of freezing levels, melting season indicators, and snow cover for selected high-evelation and continental regions in the last 50 years. Clim Change 59:33–52

    Article  Google Scholar 

  • Estivill-Castro V, Yang J (2004) Fast and robust general purpose clustering algorithms. Data Min Knowl Disc 8:127–150

    Article  Google Scholar 

  • Fang J-Y, Yoda K (1989) Climate and vegetation in China II. Distribution of main vegetation types and thermal climate. Ecol Res V4:71–83

    Article  Google Scholar 

  • Fraedrich K, Gerstengarbe FW, Werner PC (2001) Climate shifts during the last century. Clim Change 50:405–417

    Article  Google Scholar 

  • Gnanadesikan A, Stouffer RJ (2006) Diagnosing atmosphere–ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophys Res Lett 33:L22701. doi:10.1029/2006GL028098

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Gou X, Chen F, Jacoby G, Cook E, Yang M, Peng J, Zhang Y (2007) Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. Int J Climatol 27:1497–1503

    Article  Google Scholar 

  • Gu Z, Chen J, Shi P, Xu M (2007) Correlation analysis of Normalized Different Vegetation Index (NDVI) difference series and climate variables in the Xilingole steppe, China from 1983 to 1999. Front Biol China 2:218–228

    Article  Google Scholar 

  • Guetter PJ, Kutzbach JE (1990) A modified Köppen classification applied to model simulations of glacial and interglacial climates. Clim Change 16:193–215

    Article  Google Scholar 

  • Hargrove WW, Hoffman FM (1999) Using multivariate clustering to characterize ecoregion borders. Comput Sci Eng 1:18–25

    Article  Google Scholar 

  • Hargrove WW, Hoffman FM (2004) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manage 34:S39–S60

    Article  Google Scholar 

  • Hartigan JA (1975) Clustering algorithms. Wiley, New York

    Google Scholar 

  • He HS, Hao Z, Mladenoff DJ, Shao G, Hu Y, Chang Y (2005) Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China. J Biogeogr 32:2043–2056

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vila M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Hoffman FM, Hargrove Jr WW, Erickson DJ III, Oglesby RJ (2005) Using clustered climate regime to analyze and compare predictions from fully coupled general circulation models. Earth Interact 9:1–27

    Article  Google Scholar 

  • Jin ZZ, Ou XK (2000) Jinshajiang vegetation of dry-hot valleys, Yunnan and Sichuan. In: Jin ZZ, Ou XK (eds) Yuanjiang, Nujiang, Jinshajiang, Lancangjiang vegetation of dry-hot valley. Yunnan University Press and Yunnan Science & Technology Press, Kunming

    Google Scholar 

  • Kalvová J, Halenka T, Bezpalcová K, Nemešová I (2003) Köppen climate types in observed and simulated climates. Stud Geophys Geod 47:185–202

    Article  Google Scholar 

  • Köppen W (1931) Grundriss der Kilmakunde. Walter de Gruyter, Berlin

    Google Scholar 

  • Köppen W (ed) (1936) Das Geographische System der Klimate. Gerbrüder Bonträger, Berlin

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen–Geiger climate classification updated. Meteorol Z 15:259–263

    Article  Google Scholar 

  • Leng W, He HS, Bu R, Dai L, Hu Y, Wang X (2008) Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China. For Ecol Manage 254:420–428

    Article  Google Scholar 

  • Liu JY, Zhuang DF, Luo D, Xiao X (2003) Land-cover classification of China: integrated analysis of AVHRR imagery and geophysical data. Int J Remote Sens 24:2485–2500

    Article  Google Scholar 

  • Liu R, Liang S, Liu J, Zhuang D (2006) Continuous tree distribution in China: a comparison of two estimates from moderate-resolution imaging spectroradiometer and Landsat data. J Geophys Res 111. doi:10.1029/2005JD006039

  • Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH (1999) The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J Biogeogr 26:1025–1038

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Mucher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563

    Article  Google Scholar 

  • Mitchell TD, Carter TR, Jones PD, Hulme M, New M (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100) Working Paper 55. Tyndall Centre for Climate, Norwich

    Google Scholar 

  • Morgan JA, Milchunas DG, LeCain DR, West M, Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc Natl Acad Sci 104:14724–14729

    Article  Google Scholar 

  • Nakićenović N, Swart R (eds) (2000) Emissions scenarios special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5:362–385

    Article  Google Scholar 

  • Ohlemüller R, Gritti ES, Sykes MT, Thomas CD (2006) Towards European climate risk surfaces: the extent and distribution of analogous and non-analogous climates 1931–2100. Glob Ecol Biogeogr 15:395–405

    Article  Google Scholar 

  • Omernik JM (1995) Ecoregions: a spatial framework for environmental management. In: Davis W, Simon TP (eds) Biological assessment and criteria: tools for water resource planning and decision making. Publishing, Boca Raton

    Google Scholar 

  • Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model—HadCM3. Clim Dyn 16:123–146

    Article  Google Scholar 

  • Prentice KC (1990) Bioclimatic distribution of vegetation for general circulation model studies. J Geophys Res 95:11811–11830

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336

    Article  Google Scholar 

  • Saxon E, Baker B, Hargrove W, Hoffman F, Zganjar C (2005) Mapping environments at risk under different global climate change scenarios. Ecol Lett 8:53–60

    Article  Google Scholar 

  • Shaver GR, Canadell J, Chapin FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000) Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50:871–882

    Article  Google Scholar 

  • Shi XZ, Yu DS, Warner ED, Pan XZ, Peterson GW, Gong ZG, Weindorf DC (2004) Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv Horiz 45:129–136

    Google Scholar 

  • Song M, Zhou C, Hua O (2004) Distribution of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mt Res Dev 24:166–173

    Article  Google Scholar 

  • Song M, Zhou C, Hua O (2005) Simulated distribution of vegetation types in response to climate change on the Tibetan Plateau. J Veg Sci 16:341–350

    Article  Google Scholar 

  • Trewartha GT, Horn LH (1980) An introduction to climate. McGraw-Hill, New York

    Google Scholar 

  • U. S. Geological Survey (1996) GTOPO3. http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html. Cited 15 July 2005

  • Wang S, Gong D (2000) Enhancement of the warming trend in China. Geophys Res Lett 27:2581–2584

    Article  Google Scholar 

  • Wang M, Overland JE (2005) Detecting arctic climate change using Köppen climate classification. Clim Change 67:43–62

    Article  Google Scholar 

  • Wang A, Price DT (2007) Estimating global distribution of boreal, temperate, and tropical tree plant functional types using clustering techniques. J Geophys Res 112:G01024. doi:10.1029/2006JG000252

    Article  Google Scholar 

  • Washington WM, Weatherly JW, Meehl GA, Semtner AJ Jr, Bettge TW, Craig AP, Strand WG Jr, Arblaster JM, Wayland VB, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774

    Article  Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952

    Article  Google Scholar 

  • Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. PNAS 104:5738–5742

    Article  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Yong SC, Feoli E (1991) A numerical phytoclimatic classification of China. Int J Biometeorol 35:76–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, B., Diaz, H., Hargrove, W. et al. Use of the Köppen–Trewartha climate classification to evaluate climatic refugia in statistically derived ecoregions for the People’s Republic of China. Climatic Change 98, 113–131 (2010). https://doi.org/10.1007/s10584-009-9622-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9622-2

Keywords

Navigation