Climatic Change

, Volume 95, Issue 1, pp 139-168

First online:

Climate simulations of major estuarine watersheds in the Mid-Atlantic region of the US

  • R. NajjarAffiliated withDepartment of Meteorology, The Pennsylvania State University Email author 
  • , L. PattersonAffiliated withDepartment of Meteorology, The Pennsylvania State University
  • , S. GrahamAffiliated withPopulation Research Institute, The Pennsylvania State University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


To better understand the implications of anthropogenic climate change for three major Mid-Atlantic estuaries (the Chesapeake Bay, the Delaware Bay, and the Hudson River Estuary), we analyzed the regional output of seven global climate models. The simulation given by the average of the models was generally superior to individual models, which differed dramatically in their ability to simulate twentieth-century climate. The model average had little bias in its mean temperature and precipitation and, except in the Lower Chesapeake Watershed, was able to capture the twentieth-century temperature trend. Weaknesses in the model average were too much seasonality in temperature and precipitation, a shift in precipitation’s summer maximum to spring and winter minimum to fall, interannual variability that was too high in temperature and too low in precipitation, and inability to capture the twentieth-century precipitation increase. There is some evidence that model deficiencies are related to land surface parameterizations. All models warmed over the twenty-first century under the six greenhouse gas scenarios considered, with an increase of 4.7 ± 2.0°C (model mean ± 1 standard deviation) for the A2 scenario (a medium-high emission scenario) over the Chesapeake Bay Watershed by 2070–2099. Precipitation projections had much weaker consensus, with a corresponding increase of 3 ± 12% for the A2 scenario, but in winter there was a more consistent increase of 8 ± 7%. The projected climate averaged over the four best-performing models was significantly cooler and wetter than the projected seven-model-average climate. Precipitation projections were within the range of interannual variability but temperature projections were not. The implied research needs are for improvements in precipitation projections and a better understanding of the impacts of warming on streamflow and estuarine ecology and biogeochemistry.