Skip to main content

Advertisement

Log in

Sensitivity of European glaciers to precipitation and temperature – two case studies

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A nonlinear backpropagation network (BPN) has been trained with high-resolution multiproxy reconstructions of temperature and precipitation (input data) and glacier length variations of the Alpine Lower Grindelwald Glacier, Switzerland (output data). The model was then forced with two regional climate scenarios of temperature and precipitation derived from a probabilistic approach: The first scenario (“no change”) assumes no changes in temperature and precipitation for the 2000–2050 period compared to the 1970–2000 mean. In the second scenario (“combined forcing”) linear warming rates of 0.036–0.054°C per year and changing precipitation rates between −17% and +8% compared to the 1970–2000 mean have been used for the 2000–2050 period. In the first case the Lower Grindelwald Glacier shows a continuous retreat until the 2020s when it reaches an equilibrium followed by a minor advance. For the second scenario a strong and continuous retreat of approximately −30 m/year since the 1990s has been modelled. By processing the used climate parameters with a sensitivity analysis based on neural networks we investigate the relative importance of different climate configurations for the Lower Grindelwald Glacier during four well-documented historical advance (1590–1610, 1690–1720, 1760–1780, 1810–1820) and retreat periods (1640–1665, 1780–1810, 1860–1880, 1945–1970). It is shown that different combinations of seasonal temperature and precipitation have led to glacier variations. In a similar manner, we establish the significance of precipitation and temperature for the well-known early eighteenth century advance and the twentieth century retreat of Nigardsbreen, a glacier in western Norway. We show that the maritime Nigardsbreen Glacier is more influenced by winter and/or spring precipitation than the Lower Grindelwald Glacier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian E (1926) The impulses produced by sensory nerve endings. Part I. J Physiol (Lond) 61:49–72

    Google Scholar 

  • Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70:363–430

    Article  Google Scholar 

  • Chevallier F, Morcrette JJ, Cheruy F, Scott NA (2000) Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model. Q J R Meteorol Soc 126(563):761–776

    Article  Google Scholar 

  • Chinn T, Winkler S, Salinger MJ, Haakensen N (2005) Recent glacier advances in Norway and New Zealand: a comparison of their glaciological and meteorological causes. Geogr Ann 87A(1):141–157

    Article  Google Scholar 

  • Frei C (2004) Die Klimazukunft der Schweiz – Eine probabilistische Projektion. Working paper for the OcCC project “Switzerland in 2050”, OcCC, Bern, 8 pp

  • Govindaraju RS (2000) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2):124–137 DOI 10.1061/(ASCE)1084-0699(2000)5:2(124)

    Article  Google Scholar 

  • Haeberli W (2006) Integrated perception of glacier changes: a challenge of historical dimensions. In: Knight PG (ed) Glacier science and environmental change. Blackwell, Oxford, pp 423–430

    Chapter  Google Scholar 

  • Haeberli W, Hoelzle M (1995) Application of inventory data for estimating characteristics of and regional climatic-change effects on mountain glaciers: a pilot study with the European Alps. Ann Glaciol 21:206–212

    Google Scholar 

  • Hoelzle M, Haeberli W, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Glob Planet Change 36:295–306

    Article  Google Scholar 

  • Holzhauser H, Zumbühl HJ (1996) To the history of the Lower Grindelwald Glacier during the last 2800 years – palaeosols, fossil wood and historical pictorial records–new results. Z Geomorphol, Suppl Bd 104:95–127

    Google Scholar 

  • Holzhauser H, Zumbühl HJ (1999) Glacier Fluctuations in the Western Swiss and French Alps in the 16th Century. Clim Change 43(1):223–237 DOI 10.1023/A:1005546300948

    Article  Google Scholar 

  • Holzhauser H, Zumbühl HJ (2003) Nacheiszeitliche Gletscherschwankungen. In: Weingartner R, Spreafico M (eds) Hydrologischer Atlas der Schweiz (Tafel 3.8). Bundesamt für Landestopographie, Bern–Wabern

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK, 892 pp

  • Hsieh WW (2004) Nonlinear multivariate and time series analysis by neural network methods. Rev Geophys 42(1):RG1003 DOI 10.1029/2002RG000112

    Article  Google Scholar 

  • Hsieh WW, Tang B (1998) Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull Am Meteorol Soc 79(9):1855–1870

    Article  Google Scholar 

  • Imhof M (1998) Rock glaciers, Bernese Alps, western Switzerland. International Permafrost Association, Data and Information Working Group. National Snow and Ice Data Center (NSIDC), University of Colorado, Boulder, Colorado, CD-ROM

    Google Scholar 

  • Kirchhofer W, Sevruk B (1992) Mittlere jährliche korrigierte Niederschlagshöhen 1951–1980. In: Weingartner R, Spreafico M (eds) Hydrologischer Atlas der Schweiz (Tafel 2.2). Bundesamt für Landestopographie, Bern–Wabern

    Google Scholar 

  • Klok EJ, Oerlemans J (2004) Modelled climate sensitivity of the mass balance of Morteratschgletscher and its dependence on albedo parametrization. Int J Climatol 24:231–245

    Article  Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner R (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723

    Article  Google Scholar 

  • Kuhn M (1981) Climate and glaciers. IAHS-AISH Publ 131:3–20

    Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503 DOI 10.1126/science.1093877

    Article  Google Scholar 

  • Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of Autumn 2006 and Winter 2007: Historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704

    Article  Google Scholar 

  • Matthews JA, Briffa KR (2005) The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr Ann 87A(1):17–36

    Article  Google Scholar 

  • McCarthy J, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge, UK

  • Michaelsen J (1987) Cross-validation in statistical climate forecast Models. J Appl Meteorol 26(11):1589–1600

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712

    Article  Google Scholar 

  • Nesje A, Dahl SO (2003) The ‘Little Ice Age’ – only temperature? Holocene 13(1):139–145

    Article  Google Scholar 

  • Nesje A, Lie Ø, Dahl SO (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quat Sci 15:587–601

    Article  Google Scholar 

  • Nesje A, Dahl SO, Thun T, Nordli Ø (2008) The ‘Little Ice Age’ glacial expansion in western Scandinavia: summer temperature or winter precipitation? Clim Dyn (in press). DOI 10.1007/s00382-007-0324-z

  • New ME, Hulme M, Jones PD (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901–1996 monthly grids of terrestrial surface climate. J Climate 13:2217–2238

    Article  Google Scholar 

  • Nussbaumer SU, Zumbühl HJ, Steiner D (2007a) Fluctuations of the “Mer de Glace” (Mont Blanc area, France) AD 1500–2050. Part I: the history of the Mer de Glace AD 1570–2003 according to pictorial and written documents. Z Gletscherkd Glazialgeol 40(2005/2006):5–140

    Google Scholar 

  • Nussbaumer SU, Zumbühl HJ, Steiner D (2007b) Fluctuations of the “Mer de Glace” (Mont Blanc area, France) AD 1500–2050. Part II: the application of a neural network to the length record of the Mer de Glace. Z Gletscherkd Glazialgeol 40(2005/2006):141–175

    Google Scholar 

  • Oerlemans J (2001) Glaciers and climate change. Balkema, Rotterdam, 148 pp

    Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677 DOI 10.1126/science.1107046

    Article  Google Scholar 

  • Oerlemans J, Klok EJ (2004) Effect of summer snowfall on glacier mass balance. Ann Glaciol 28:97–100

    Article  Google Scholar 

  • Oerlemans J, Reichert BK (2000) Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J Glaciol 46(152):1–6

    Article  Google Scholar 

  • Oerlemans J, Anderson B, Hubbard A, Huybrechts P, Johannesson T, Knap WH, Schmeits M, Stroeven AP, van de Wal RSW, Wallinga J, Zuo Z (1998) Modelling the response of glaciers to climate warming. Clim Dyn 14(4):267–274 DOI 10.1007/s003820050222

    Article  Google Scholar 

  • Østrem G, Liestøl O, Wold B (1976) Glaciological investigations at Nigardsbreen, Norway. Nor Geogr Tidsskr 30(4):187–209

    Article  Google Scholar 

  • Østrem G, Dale Selvig K, Tandberg K (1988) Atlas over breer i Sør-Norge (Atlas of glaciers in South Norway). Norges vassdrags- og energiverk, vassdragsdirektoratet. Meddelelse Nr. 61 fra Hydrologisk avdeling

  • Papik K, Molnar B, Schaefer R, Dombovari Z, Tulassay Z, Feher J (1998) Application of neural networks in medicine – a review. Med Sci Monit 4(3):538–546

    Google Scholar 

  • Paul F, Kääb A, Maisch M, Kellenberger T, Haeberli W (2004) Rapid disintegration of Alpine glaciers observed with satellite data. Geophys Res Lett 31:L21402 DOI 10.1029/2004GL020816

    Article  Google Scholar 

  • Pauling A, Luterbacher J, Casty C, Wanner H (2006) 500 years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405 DOI 10.1007/s00382-005-0090-8

    Article  Google Scholar 

  • Rasmussen LA, Andreassen LM, Conway H (2007) Reconstruction of mass balance of glaciers in southern Norway back to 1948. Ann Glaciol 46:255–260

    Article  Google Scholar 

  • Reichert BK, Bengtsson L, Oerlemans J (2001) Midlatitude forcing mechanisms for glacier mass balance investigated using general circulation models. J Clim 14(17):3767–3784

    Article  Google Scholar 

  • Reusch DB, Alley RB (2004) A 15-year West Antarctic climatology from six automatic-weather-station temperature and pressure records. J Geophys Res 109:D04103 DOI 10.1029/2003JD004178

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing: explorations in the microstructure of cognition. vol. 1. MIT, Cambridge, MA, pp 318–362

    Google Scholar 

  • Sandham W, Leggett M (eds) (2003) Geophysical applications of artificial neural networks and fuzzy logic. Modern approaches in geophysics, vol 21. Kluwer, Boston, 324 pp

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  • Schmeits MJ, Oerlemans J (1997) Simulation of the historical variations in length of Unterer Grindelwaldgletscher, Switzerland. J Glaciol 43(143):152–164

    Google Scholar 

  • Schöner W, Böhm R (2007) A statistical mass-balance model for reconstruction of LIA ice mass for glaciers in the European Alps. Ann Glaciol 46:161–169

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, UK, 996 pp

  • Steiner D (2005) Glacier variations in the Bernese Alps (Switzerland) – reconstructions and simulations. Dissertation, University of Bern, Switzerland

  • Steiner D, Walter A, Zumbühl HJ (2005) The application of a non-linear backpropagation neural network to study the mass balance of Grosse Aletschgletscher, Switzerland. J Glaciol 51(173):313–323

    Article  Google Scholar 

  • Steiner D, Zumbühl HJ, Bauder A (2008) Two Alpine glaciers over the past two centuries: a scientific view based on pictorial sources. In: Orlove B, Wiegandt E, Luckman BH (eds) Darkening Peaks: Glacier Retreat, Science, and Society. University of California Press, Berkeley, pp 83–99

    Google Scholar 

  • Stone M (1974) Cross-validation choice and the assessment of statistical predictions. J R Stat Soc B36(1):111–147

    Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614 DOI 10.1038/nature03089

    Article  Google Scholar 

  • Tagliaferri R, Longo G, D'Argenio B, Incoronato A (2003) Introduction: neural network analysis of complex scientific data: astronomy and geosciences. Neural Netw 16(3–4):295–517

    Article  Google Scholar 

  • Vincent C, Le Meur E, Six D, Funk M (2005) Solving the paradox of the end of the Little Ice Age in the Alps. Geophys Res Lett 32(9):L09706 DOI 10.1029/2005GL022552

    Article  Google Scholar 

  • Walter A, Schönwiese CD (2002) Attribution and detection of anthropogenic climate change using a backpropagation neural network. Meteorol Z 11(5):335–343

    Article  Google Scholar 

  • Walter A, Schönwiese CD (2003) Nonlinear statistical attribution and detection of anthropogenic climate change using simulated annealing algorithm. Theor Appl Climatol 76:1–12

    Article  Google Scholar 

  • Wang W, Jones P, Partridge D (2000) Assessing the impact of input features in a feedforward neural network. Neural Comput Appl 9:101–112

    Article  Google Scholar 

  • Wanner H, Rickli R, Salvisberg E, Schmutz C, Schüepp M (1997) Global climate change and variability and its influence on Alpine climate – concepts and observations. Theor Appl Climatol 58:221–243

    Article  Google Scholar 

  • Wanner H, Holzhauser H, Pfister C, Zumbühl HJ (2000) Interannual to centennial scale climate variability in the European Alps. Erdkunde 54:62–69

    Article  Google Scholar 

  • Wigley TML, Raper SCB (2001) Interpretation of high projections for global-mean warming. Science 293:451–454

    Article  Google Scholar 

  • Wu A, Hsieh WW (2003) Nonlinear interdecadal changes of the El Niño-Southern oscillation. Clim Dyn 21(7–8):719–730 DOI 10.1007/s00382-003-0361-1

    Article  Google Scholar 

  • Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32(15):L15713 DOI 10.1029/2005GL023424

    Article  Google Scholar 

  • Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13):L13504 DOI 10.1029/2006GL026319

    Article  Google Scholar 

  • Zumbühl HJ (1980) Die Schwankungen der Grindelwaldgletscher in den historischen Bild- und Schriftquellen des 12. bis 19. Jahrhunderts. Denkschriften der Schweizerischen Naturforschenden Gesellschaft 92, 279 pp

  • Zumbühl HJ, Holzhauser H (1988) Alpengletscher in der kleinen Eiszeit. Sonderheft zum 125jährigen Jubiläum des SAC. Die Alpen 64(3):129–322

    Google Scholar 

  • Zumbühl HJ, Messerli B, Pfister C (1983) Die kleine Eiszeit: Gletschergeschichte im Spiegel der Kunst. Katalog zur Sonderausstellung des Schweizerischen Alpinen Museums Bern und des Gletschergarten-Museums Luzern vom 9.6.–14.8.1983 (Luzern), 24.8.–16.10.1983 (Bern)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Steiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, D., Pauling, A., Nussbaumer, S.U. et al. Sensitivity of European glaciers to precipitation and temperature – two case studies. Climatic Change 90, 413–441 (2008). https://doi.org/10.1007/s10584-008-9393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-008-9393-1

Keywords

Navigation