Skip to main content

Advertisement

Log in

Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A hydrologic model was driven by the climate projected by 11 GCMs under two emissions scenarios (the higher emission SRES A2 and the lower emission SRES B1) to investigate whether the projected hydrologic changes by 2071–2100 have a high statistical confidence, and to determine the confidence level that the A2 and B1 emissions scenarios produce differing impacts. There are highly significant average temperature increases by 2071–2100 of 3.7°C under A2 and 2.4°C under B1; July increases are 5°C for A2 and 3°C for B1. Two high confidence hydrologic impacts are increasing winter streamflow and decreasing late spring and summer flow. Less snow at the end of winter is a confident projection, as is earlier arrival of the annual flow volume, which has important implications on California water management. The two emissions pathways show some differing impacts with high confidence: the degree of warming expected, the amount of decline in summer low flows, the shift to earlier streamflow timing, and the decline in end-of-winter snow pack, with more extreme impacts under higher emissions in all cases. This indicates that future emissions scenarios play a significant role in the degree of impacts to water resources in California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulla FA, Lettenmaier DP, Wood EF, Smith JA (1996) Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River basin. J Geophys Res 101(D3):7449–7459

    Article  Google Scholar 

  • Benestad RE (2001) A comparison between two empirical downscaling strategies. Intl J Climatol 21:1645–1668

    Article  Google Scholar 

  • Brekke LD, Miller NL, Bashford KE, Quinn NWT, Dracup JA (2004) Climate change impacts uncertainty for water resources in the San Joaquin River basin, California. J Am Water Resour Assoc 40:149–164

    Google Scholar 

  • Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim Change 62:337–363

    Article  Google Scholar 

  • Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the Coupled Model Intercomparison Project (CMIP). Glob Planet Change 37:103–133

    Article  Google Scholar 

  • Delworth TL et al (2005) GFDL’s CM2 global coupled climate models part 1: formulation and simulation characteristics. J Climate 19:643–674

    Article  Google Scholar 

  • Dettinger M (2004) From climate-change spaghetti to climate-change distribution, Discussion Paper 500-04-028. California Energy Commission, Sacramento, California, p 20

    Google Scholar 

  • Dettinger MD, Cayan DR, Meyer MK, Jeton AE (2004) Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099. Clim Change 62:283–317

    Article  Google Scholar 

  • Diansky NA, Volodin EM (2002) Simulation of present-day climate with a coupled atmosphere–ocean general circulation model. Izv Atmos Ocean Phys (Engl Transl) 38(6):732–747

    Google Scholar 

  • Draper AJ, Jenkins MW, Kirby KW, Lund JR, Howitt RE (2003) Economic-engineering optimization for California water management. J Water Resour Plan Manage 129(3):155–164

    Article  Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM (2005) The importance of land-cover change in simulating future climates. Science 310(5754):1674–1678

    Article  Google Scholar 

  • Field CB, Daily GC, Davis FW, Gaines S, Matson PA, Melack J, Miller NL (1999) Confronting climate change in California: ecological impacts on the golden state. Union of Concerned Scientists, Cambridge, Massachusetts, p 63

    Google Scholar 

  • Gleick PH (1987) The development and testing of a water balance model for climate impact assessment: modeling the Sacramento basin. Water Resour Res 23:1049–1061

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks HT, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 climate system model, CSIRO Atmospheric Research Technical Paper No.60, CSIRO. Division of Atmospheric Research, Victoria, Australia, p 130

    Google Scholar 

  • Haan CT (2002) Statistical methods in hydrology, 2nd edn. Iowa State Press, Ames, Iowa, USA, p 496

    Google Scholar 

  • Hamlet AF, Lettenmaier DP (1999) Effects of climate change on hydrology and water resources of the Columbia River basin. J Am Water Resour Assoc 35:1597–1624

    Google Scholar 

  • Hayhoe K, Cayan D, Field C, Frumhoff P, Maurer E, Miller N, Moser S, Schneider S, Cahill K, Cleland E, Dale L, Drapek R, Hanemann RM, Kalkstein L, Lenihan J, Lunch C, Neilson R, Sheridan S, Verville J (2004) Emissions pathways, climate change, and impacts on California. Proc Natl Acad Sci USA 101(34):12422–12427

    Article  Google Scholar 

  • IPCC, 2001: Climate Change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, p 881

  • IPSL (2005) The new IPSL climate system model: IPSL-CM4. Institut Pierre Simon Laplace des Sciences de l’Environnement Global, Paris, France, p 73

    Google Scholar 

  • Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo J-J, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the AOGCM ECHAM5/MPI-OM. J Climate 19:3952–3972

    Article  Google Scholar 

  • K-1 model developers (2004) K-1 coupled model (MIROC) description, K-1 technical report, 1. In: Hasumi H, Emori S (eds) Center for Climate System Research, University of Tokyo, p 34

  • Kim J (2005) A projection of the effects of the climate change induced by increased CO2 on extreme hydrologic events in the western U.S. Clim Change 68:153–168

    Article  Google Scholar 

  • Kim J, Kim TK, Arritt RW, Miller NL (2002) Impacts of increased CO2 on the hydroclimate of the western United States. J Climate 15:1926–1943

    Article  Google Scholar 

  • Kiparski M, Gleick PH (2004) Climate change and California water resources. In: Gleick PH (ed) The World’s Water 2004–2005. Island Press, Washington, District of Columbia, pp 157–188

    Google Scholar 

  • Knowles N, Cayan DR (2004). Elevational dependence of projected hydrologic changes in the San Francisco estuary and watershed. Clim Change 62:319–336

    Article  Google Scholar 

  • Lenihan JM, Drapek R, Bachelet D, Neilson RP (2003) Climate change effects on vegetation distribution, carbon, and fire in California. Ecol Appl 13(6):1167–1681

    Google Scholar 

  • Lettenmaier DP, Gan TY (1990) Hydrologic sensitivities of the Sacramento–San Joaquin River basin, California, to global warming. Water Resour Res 26:69–86

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood E, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 99(D7):14415–14428

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF (1996) One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J Geophys Res 101(D16):21403–21422

    Article  Google Scholar 

  • Lohmann D, Nolte-Holube R, Raschke E (1996) A large-scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus 48A:708–721

    Google Scholar 

  • Maurer EP, Duffy PB (2005) Uncertainty in projections of streamflow changes due to climate change in California Geophys Research Let 32:doi 10.1029/2004GL021462

  • Maurer EP, O’Donnell GM, Lettenmaier DP, Roads JO (2001) Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J Geophys Res 106(D16):17841–17862

    Article  Google Scholar 

  • Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J Climate 15(22):3237–3251

    Article  Google Scholar 

  • Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, Whetton P (2001) Climate scenario development. In: Houghton JT, et al (eds) Climate Change 2001: the scientific basis. Contribution of working group 1 to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 739–768

    Google Scholar 

  • Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The coupled model intercomparison project (CMIP). Bull Am Meteorol Soc 81(2):313–318

    Article  Google Scholar 

  • Meehl GA, Covey C, McAvaney B, Latif M, Stoufer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86:89–93

    Article  Google Scholar 

  • Miller NL, Bashford KE, Strem E (2003) Potential impacts of climate change on California hydrology. J Am Water Resour Assoc 39:771–784

    Google Scholar 

  • Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in western North America. Bull Am Meteorol Soc 86:39–49

    Article  Google Scholar 

  • Nakicenovic N, et al (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Nijssen B, Lettenmaier DP, Liang X, Wetzel SW, Wood E (1997) Streamflow simulation for continental-scale basins. Water Resour Res 33(4):711–724

    Article  Google Scholar 

  • Nijssen B, O’Donnell GM, Lettenmaier DP, Lohmann D, Wood EF (2001) Predicting the discharge of global rivers. J Clim 14:1790–1808

    Article  Google Scholar 

  • Payne JT, Wood AW, Hamlet AF, Palmer RN, Lettenmaier DP (2004) Mitigating the effects of climate change on the water resources of the Columbia River basin. Clim Change 62:233–256

    Article  Google Scholar 

  • Russell GL, Miller JR, Rind D (1995) A coupled atmosphere–ocean model for transient climate change studies. Atmos–Ocean 33:683–730

    Google Scholar 

  • Russell GL, Miller JR, Rind D, Ruedy RA, Schmidt GA, Sheth S (2000) Comparison of model and observed regional temperature changes during the past 40 years. J Geophys Res 105:14891–14898

    Article  Google Scholar 

  • Salas-Mélia D, Chauvin F, Déqué M, Douville H, Gueremy JF, Marquet P, Planton S, Royer JF, Tyteca S (2005) Description and validation of the CNRM-CM3 global coupled model. Clim Dyn (in review)

  • Snyder MA, Bell JL, Sloan LC, Duffy PB, Govindasamy B (2002) Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region. Geophys Res Lett 29(11), doi 10.1029/2001GL014431

  • Stewart IT, Cayan DR, Dettinger MD (2004) Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario. Clim Change 62:217–232

    Article  Google Scholar 

  • Stewart I, Cayan DR, Dettinger MD (2005) Changes toward earlier streamflow timing across western North America. J Climate 18:1136–1155

    Article  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • National Assessment Synthesis Team (2000) Climate change impacts on the United States: the potential consequences of climate variability and change on water resources of the United States. US Global Change Research Program, Washington, District of Columbia, p 151

  • Van Rheenen NT, Wood AW, Palmer RN, Lettenmaier DP (2004) Potential implications of PCM climate change scenarios for California hydrology and water resources. Clim Change 62:257–281

    Article  Google Scholar 

  • Washington WM, Weatherly JW, Meehl GA, Semtner AJ, Bettge TW, Craig AP, Strand WG, Arblaster J, Wayland VB, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dyn 16:755–774

    Article  Google Scholar 

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames, UK. Water Resour Res 42, W02419, doi 10.1029/2005WR004065

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. Academic, San Diego, California, p 627

    Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long range experimental hydrologic forecasting for the eastern U.S. J Geophys Res 107(D20):4429

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216

    Article  Google Scholar 

  • Yukimoto S, Noda A, Kitoh A, Sugi M, Kitamura Y, Hosaka M, Shibata K, Maeda S, Uchiyama T (2001) The new Meteorological Research Institute coupled GCM (MRI-CGCM2) – model climate and variability. Pap Meteorol Geophys 51:47–88

    Article  Google Scholar 

  • Zhao R-J, Fang L-R, Liu X-R, Zhang Q-S (1980) The Xin’anjiang model, in hydrological forecasting, proceedings, Oxford Symposium. IAHS Publ 129:351–356

    Google Scholar 

  • Zierl B, Bugmann H (2005) Global change impacts on hydrological processes in Alpine Catchments. Water Resour Res 41, doi 10:1029/2004WR003447

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin P. Maurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, E.P. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Climatic Change 82, 309–325 (2007). https://doi.org/10.1007/s10584-006-9180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-006-9180-9

Keywords

Navigation