Skip to main content

Advertisement

Log in

Abatement of Greenhouse Gases: Does Location Matter?

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Today's climate policy is based on the assumption that the location of emissions reductions has no impact on the overall climate effect. However, this may not be the case since reductions of greenhouse gases generally will lead to changes in emissions of short-lived gases and aerosols. Abatement measures may be primarily targeted at reducing CO2, but may also simultaneously reduce emissions of NOx, CO, CH4 and SO2 and aerosols. Emissions of these species may cause significant additional radiative forcing. We have used a global 3-D chemical transport model and a radiative transfer model to study the impact on climate in terms of radiative forcing for a realistic change in location of the emissions from large-scale sources. Based on an assumed 10% reduction in CO2 emissions, reductions in the emissions of other species have been estimated. Climate impact for the SRES A1B scenario is compared to two reduction cases, with the main focus on a case with emission reductions between 2010 and 2030, but also a case with sustained emission reductions. The emission reductions are applied to four different regions (Europe, China, South Asia, and South America). In terms of integrated radiative forcing (over 100 yr), the total effect (including only the direct effect of aerosols) is always smaller than for CO2 alone. Large variations between the regions are found (53–86% of the CO2 effect). Inclusion of the indirect effects of sulphate aerosols reduces the net effect of measures towards zero. The global temperature responses, calculated with a simple energy balance model, show an initial additional warming of different magnitude between the regions followed by a more uniform reduction in the warming later. A major part of the regional differences can be attributed to differences related to aerosols, while ozone and changes in methane lifetime make relatively small contributions. Emission reductions in a different sector (e.g. transportation instead of large-scale sources) might change this conclusion since the NOx to SO2 ratio in the emissions is significantly higher for transportation than for large-scale sources. The total climate effect of abatement measures thus depends on (i) which gases and aerosols are affected by the measure, (ii) the lifetime of the measure implemented, (iii) time horizon over which the effects are considered, and (iv) the chemical, physical and meteorological conditions in the region. There are important policy implications of the results. Equal effects of a measure cannot be assumed if the measure is implemented in a different region and if several gases are affected. Thus, the design of emission reduction measures should be considered thoroughly before implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., and Welton, E. J.: 2000, ‘Reductions of tropical cloudiness by soot,’ Science 288, 1042–1047.

    Article  Google Scholar 

  • Berglen, T. F., Berntsen, T., Isaksen, I. S. A., and Sundet, J.: 2004, ‘A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle,’ J. Geophys. Res. 109(D19), D19310, doi:10.1029/2003JD003948.

  • Berntsen, T., Fuglestvedt, J. S., and Isaksen, I. S. A.: 1992, ‘Chemical-dynamical modelling of the atmosphere with emphasis on methane oxidation,’ Ber. Bunsen Ges. Phys. Chem. 96, 241–251.

    Google Scholar 

  • Berntsen, T. and Isaksen, I. S. A.: 1997, ‘A global 3-D chemical transport model for the troposphere; 1. Model description and CO and ozone results,’ J. Geophys. Res. 102, 21,239–21,280.

    Google Scholar 

  • Berntsen, T., Isaksen, I. S. A., Fuglestvedt, J. S., Alsvik Larsen, T., Stordal, F., Freckleton, R. S., and Shine, K. P.: 1997, ‘Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing,’ J. Geophys. Res. 102, 28,101–281.

    Google Scholar 

  • Berntsen, T. and Isaksen, I. S. A.: 1999, ‘Effects of lightning and convection on changes in tropospheric ozone due to NOx emissions from aircraft,’ Tellus 51B, 766–788.

    Google Scholar 

  • Berntsen, T., Fuglestvedt, J. S., Joshi, M., Shine, K. P., Ponater, M., Sausen, R., and Hauglustaine, D. A.: 2002, ‘Indirect forcing from emissions of NOx and CO: Is the location of emissions important?’ Proceedings from the Third International Symposium on Non-CO 2 Greenhouse Gases. Millpress, Rotterdam, pp. 363–369.

  • Brasseur, G. P., Cox, R. A., Hauglustaine, D. A., Isaksen, I. S. A., Lelieveld, J., Lister, D. H., Sausen, R., Shumann, U., Wahner, A., and Wiesen, P.: 1998, ‘European scientific assessment of the atmospheric effects of aircraft emissions,’ Atmos. Environ. 32, 2329–2418.

    Article  Google Scholar 

  • Caldeira, K. and Kasting, J. F.: 1993, ‘Insensitivity of global warming potentials to carbon dioxide emission scenarios,’ Nature, 366, 251–253.

    Article  Google Scholar 

  • Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: 1999, ‘Construction of a 1 × 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative forcing impact in the ECHAM4 model,’ J. Geophys. Res. 104, 22137–22162.

    Article  Google Scholar 

  • Crutzen, P. J.: 1987, ‘Role of the tropics in atmospheric chemistry,’ in Dickinson, R. E. (ed.)The Geophysiology of Amazonia, Wiley, New York, pp. 107–130.

    Google Scholar 

  • Derwent, R. G., Collins, W. J., Johnson, C. E., and Stevenson, D. S.: 2001, ‘Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects,’ Clim. Change, 25, 1–25.

    Google Scholar 

  • European Environment Agency (EEA): 1999, ‘Joint EMEP/CORINAIR Atmospheric emission inventory guidebook,’ Technical report No. 30, 2nd edn. European Environmental Agency, Copenhagen, Denmark.

  • Forster, P. M. de F. and Shine, K. P.: 1997, ‘Radiative forcing and temperature trends from stratospheric ozone depletion,’ J. Geophys. Res. 102, 10,841–10,855.

  • Fuglestvedt, J. S., Berntsen, T. K., Godal, O., and Skodvin, T.: 2000, ‘Climate implications of GWP-based reductions in greenhouse gas emissions,’ Geophys. Res. Lett. 27, 409–412.

    Article  Google Scholar 

  • Fuglestvedt, J. S. and Berntsen, T. K.: 1999, ‘A simple model for scenario studies of changes in global climate: Version 1.0,’ Working Paper 1999-02. CICERO, Oslo, Norway.

  • Fuglestvedt, J. S., Berntsen, T. K., Isaksen, I. S. A., Mao, H., Liang, X.-Z., and Wang, W.-C.: 1999, ‘Climatic effects of NOx emissions through changes in tropospheric O3 and CH4 – A global 3-D model study,’ Atmos. Environ. 33, 961–977.

    Article  Google Scholar 

  • Fuglestvedt, J. S., Isaksen, I. S. A., and Wang, W. -C.: 1996, ‘Estimates of indirect global warming potential for CH4, CO and NOx,’ Clim. Change 34, 404–437.

    Article  Google Scholar 

  • Fuglestvedt, J. S., Berntsen, T., Godal, O., Sausen, R., Shine, K. P., and Skodvin, T.: 2003, ‘Metrics of climate change: Assessing radiative forcing and emission indices,’ Clim. Change 58, 267–331.

    Article  Google Scholar 

  • Hammit, J. K., Jain, A. K., Adams, J. L., and Wuebbels, D. J.: 1996, ‘A welfare-based index for assessing environmental effects of greenhouse-gas emissions,’ Nature 381, 301–303.

    Article  Google Scholar 

  • Hansen, J., Sato, M., and Ruedy, R.: 1997, ‘Radiative forcing and climate response,’ J. Geophys. Res. 102, 6831–6864.

    Article  Google Scholar 

  • Harvey, L. D. D.: 1993, ‘A guide to global warming potentials (GWPs),’ Energy Pol. 21, 24–34.

    Article  Google Scholar 

  • Harvey, L. D. D., Gregory, J., Hoffert, M., Jain, A., Lal, M., Leemans, R., Raper, S. B. C., Wigley, T. M. L., and Wolde, J. de.: 1997, ‘An introduction to simple climate models used in the IPCC Second Assessment Report:,’ IPCC Technical Paper 2, IPCC, Geneva, 50 p.

  • Hasselmann, K., Hasselmann, S., Ocana, V., and Storch, H. V.: 1997, ‘Sensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM),’ Clim. Change 37,345–386.

    Article  Google Scholar 

  • Hayhoe, K., Kheshgi, H. S., Jain, A. T., and Wuebbles, D. J.: 2002, ‘Substitution of natural gas for coal: Climate effects of utility sector emissions,’ Clim. Change 54, 107–139.

    Article  Google Scholar 

  • Haywood, J. M., Ramaswamy, V., and Donner, L. J.: 1997, ‘A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulphate aerosol,’ Geophys. Res. Lett. 24, 143–146.

    Article  Google Scholar 

  • Hesstvedt, E., Hov, Ø ., and Isaksen, I. S. A.: 1978, ‘Quasi steady-state approximation in air pollution modelling: Comparison of two numerical schemes for oxidant prediction,’ Int. J. Chem. Kinet. X, 971–994.

    Article  Google Scholar 

  • Holtslag, A. A. M., DrBruijn, E. I. F., and Pan, H. -L.: 1990, ‘A High resolution air mass transformation model for short-range weather forecasting,’ Mon. Wea. Rev. 118, 1561–1575.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): 1990, Climate Change. The Scientific Assessment, UNEP/WMO, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): 1996, Climate Change 1995. The Science of Climate Change, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): 1996b, Climate Change 1995. Economic and Social Dimensions of Climate Change, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): 1997. An introduction to simple climate models used in the IPCC second assessment report. IPCC Technical Paper II, Cambridge University Press, Cambridge, U.K.

  • Intergovernmental Panel on Climate Change (IPCC): 1999, Aviation and the Global Atmosphere – A Special Report of IPCC Working Groups I and III, Cambridge University Press, Cambridge, U.K.

  • Intergovernmental Panel on Climate Change (IPCC): 2000, Special Report on Emission Scenarios, Cambridge University Press, Cambridge, U.K.

  • Intergovernmental Panel on Climate Change (IPCC): 2001, Climate Change 2001 – The Scientific Basis, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Isaksen, I. S. A., Hov, Ø ., and Hesstvedt, E.: 1978, ‘Ozone generation over rural areas,’ Environ. Sci. Technol. 12, 1279–1284.

    Article  Google Scholar 

  • Johnson, C. E. and Derwent, R. G.: 1996, ‘Relative radiative forcing consequences of global emissions of hydrocarbons, carbon monoxide and NOx from human activities estimated with zonally-averaged two-dimensional model,’ Climate Change 34, 439–462.

    Article  Google Scholar 

  • Joos, F., Bruno, M., Fink, R., Stocker, T. F., Siegenthaler, U., Le Quéré, C., and Sarmiento, J. L.: 1996, ‘An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake,’ Tellus 48B, 397–417.

    Google Scholar 

  • Joshi, M., Shine, K. P., Ponater, M., Stuber, N., Sausen, R., and Li, L.: 2003, ‘A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change,’ Clim. Dyn. 20, 843–854.

    Google Scholar 

  • Kandlikar, M.: 1995, ‘The relative role of trace gas emissions in greenhouse abatement policies,’ Energy Pol. 23, 879–883.

    Article  Google Scholar 

  • Karlsdóttir, S., and Isaksen, I. S. A.: 2000, ‘Changing methane lifetime: Possible cause for reduced growth,’ Geophys. Res. Lett. 27, 93–96.

    Article  Google Scholar 

  • Kraabøl, A. G., Stordal, F. Berntsen, T., and Sundet, J.: 2002, ‘Impacts of NOx emissions from subsonic aircraft in a global 3-D CTM including plume processes,’ J. Geophys. Res. 107, doi:10.1029/2001JD001019.

    Google Scholar 

  • Kristjansson, J. E.: 2002, ‘Studies of the aerosol indirect effect of sulphate and black carbon aerosols,’ J. Geophys. Res. 107(D15), doi:10.1029/2001JD000887.

    Google Scholar 

  • Lacis, A. A., Wuebbles, D. J., and Logan, J. A.: 1990, ‘Radiative forcing of climate by changes in the vertical distribution of ozone,’ J. Geophys. Res. 95, 9971–9981.

    Article  Google Scholar 

  • Lelieveld, J. et al.: 2001, ‘The Indian Ocean experiment: Widespread air pollution from south and southeast Asia,’ Science 291, 1031–1036.

    Article  Google Scholar 

  • Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J., Fischer, H., Feichter, J., Flatau, P. J., Heland, J., Holzinger, R., Korrmann, R., Lawrence, M. G., Levin, Z., Markowicz, K. M., Mihalopoulos, N., Minikin, A., Ramanathan, V., de Reus, M., Roelofs, G. J., Scheeren, H. A., Sciare, J., Schlager, H., Schultz, M., Siegmund, P., Steil, B., Stephanou, E. G., Stier, P., Traub, M., Warneke, C., Williams, J., and Ziereis, H.: 2002. Global air pollution crossroads over the Mediterranean, Science, 298, 794–799.

    Article  Google Scholar 

  • Lin, X., Trainer, M., and Liu, S. C.: 1988, ‘On the non-linearity of the tropospheric ozone production,’ J. Geophys. Res. 93, 15,879–15,888.

    Google Scholar 

  • Liousse, C., Penner, J. E., Chuang, C., Walton, J. J., Edelmann, H., and Cachier, H.: 1996, ‘A global three-dimensional model study of carbonaceous aerosols,’ J. Geophys. Res. 101, 19411–19432.

    Article  Google Scholar 

  • Lohmann, U. and Feichter, J.: 2001, ‘Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale?,’ Geophys. Res. Lett. 28, 159–161.

    Article  Google Scholar 

  • Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and storage of CO2 in the ocean – An inorganic ocean-circulation carbon cycle model,’ Clim. Dyn. 2, 63–90.

    Article  Google Scholar 

  • Menon, S., Hansen, J., Nazarenco, L., and Lao, Y.: 2002, ‘Climate effects of black carbon aerosols in India and China,’ Science 297, 2250–2253.

    Article  Google Scholar 

  • Myhre, G., Stordal, F., Restad, K., and Isaksen, I. S. A.: 1998, ‘Estimates of the direct radiative forcing due to sulfate and soot aerosols,’ Tellus 50B, 463–477.

    Google Scholar 

  • Myhre, G., Karlsdóttir, S., Isaksen, I. S. A., and Stordal, F.: 2000, ‘Radiative forcing due to changes in tropospheric ozone in the period 1980 to 1996,’ J. Geophys. Res. 105, 28,935–28,942.

    Google Scholar 

  • Myhre, G., Jonson, J. E., Bartnicki, J., Stordal, F., and Shine, K. P.: 2002, ‘Role of spatial and temporal variations in the computation of radiative forcing due to sulphate aerosols: A regional study,’ Quart. J. Roy. Met. Soc. 128, 973–989.

    Article  Google Scholar 

  • Osborn, T. J. and Wigley, T. M. L.: 1994, ‘A simple model for estimating methane concentrations and lifetime variations,’ Clim. Dyn. 9, 181–193.

    Article  Google Scholar 

  • Penner, J. E., Chuang, C. C., and Grant, K.: 1998, ‘Climate forcing by carbonaceous and sulphate aerosols,’ Clim. Dyn. 14, 839–851.

    Article  Google Scholar 

  • Poppe, D., Wallasch, M., and Zimmermann, J.: 1993, ‘The dependence of the concentrations of OH on its precursors under moderately polluted conditions: A model study,’ J. Atmos. Chem. 16, 61–78.

    Article  Google Scholar 

  • Prather, M. J.: 1986, ‘Numerical advection by conservation of second-order moments,’ J. Geophys. Res. 91, 6671–6681.

    Google Scholar 

  • Prather, M. J.: 1996, ‘Natural modes and timescales in atmospheric chemistry: Theory, GWPs for CH4 and CO, and runaway growth,’ Geophys. Res. Lett. 23, 2597–2600.

    Article  Google Scholar 

  • Price, C. and Rind, D.: 1993, ‘What determines the cloud-to-ground fraction in thunderstorms. Geophys. Res. Lett. 20, 463–466.

    Google Scholar 

  • Rotstayn, L. D. and Penner, J. E.: 2001, ‘Indirect aerosol forcing, quasi-forcing and climate response. J. Climate 14, 2960–2975.

    Article  Google Scholar 

  • Schlesinger, M. E., Jiang, X., and Charlson, R. J.: 1992, ‘Implications of anthropogenic atmospheric sulphate for the sensitivity of the climate system,’ Reprinted from Climate Change and Energy Policy. American Institute of Physics, New York.

  • Siegenthaler, U. and Joos, F.: 1992, ‘Use of a simple model for studying oceanic tracer distributions and the global carbon cycle,’ Tellus 44B, 186–207.

    Google Scholar 

  • Smith, S.: 2003, ‘The evaluation of greenhouse gas indices: An Editorial Comment,’ Climate Change 58, 261–265.

    Article  Google Scholar 

  • Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: 1988, ‘A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,’ Appl. Opt. 27, 2502–2509.

    Article  Google Scholar 

  • Sundet, J. K.: 1997, ‘Model Studies with a 3-d Global CTM using ECMWF data’. Ph.D. Thesis, Department of Geophysics, University of Oslo, Norway.

  • Tiedtke, M.: 1989, ‘A comprehensive mass flux scheme for cumulus parameterisation on large scale models,’ Mon. Wea., Rev. 117, 1779–1800.

    Article  Google Scholar 

  • Wang, W.-C., Pinto, J. P., and Yung, Y. L.: 1980, ‘Climatic effects due to halogenated compounds in the earth's atmosphere,’ J. Atmos. Sciences 37, 247–256.

    Google Scholar 

  • Wang, W.-C. and Sze, N. D.: 1980, ‘Coupled effects of atmospheric N2O and O3 on the Earth's climate,’ Nature 286, 589–590.

    Article  Google Scholar 

  • West, J. J., Hope, C., and Lane, S. N.: 1997, ‘Climate change and energy policy, the impacts and implications of aerosols,’ Energy Policy 25, 923–939.

    Article  Google Scholar 

  • Wild, O., Zhu, X., and Prather, M. J.: 2000, ‘Fast-J: Accurate simulation of in- and below cloud photolysis in tropospheric chemical models,’ J. Atmos. Chem. 37, 245–282.

    Article  Google Scholar 

  • Wild, O., Prather, M. J., and Akimoto, H.: 2001, ‘Indirect long-term global radiative cooling from NOx emissions,’ Geophys. Res. Lett. 28, 1719–1722.

    Article  Google Scholar 

  • Wigley, T. M. L.: 1991, ‘Could reducing fossil-fuel emissions cause global warming?,’ Nature 349, 503–506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terje Berntsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berntsen, T., Fuglestvedt, J., Myhre, G. et al. Abatement of Greenhouse Gases: Does Location Matter?. Climatic Change 74, 377–411 (2006). https://doi.org/10.1007/s10584-006-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-006-0433-4

Keywords

Navigation