Skip to main content

Advertisement

Log in

Monte Carlo Assessment of Sampling Uncertainty of Climate Change Impacts on Water Resources Yield in Yorkshire, England

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Despite much effort over the last decade, there still remain many uncertainties in the assessed impacts of climate change on water resources. This study has carried out Monte Carlo Simulations to characterise the sampling uncertainties in assessed water resources impacts. The investigation employed data from catchments in northeast England, which incorporate water supply reservoirs. The impacts assessment used scenarios from three GCM experiments: (i) the Canadian first generation coupled model (CGCM1), (ii) the Australian first generation coupled model (CSIRO-mk2b) and (iii) the British third generation model (HadCM3). The results showed that yield impacts are subject to wide variability, irrespective of the GCM experiment, which calls for caution when using mean impacts obtained from single data record analysis for decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeloye, A. J. and Nawaz, N. R.: 1997, ‘The reliability of storage-yield estimates for some reservoir sites in Yorkshire’, Dept. Civil & Offshore Eng., Edinburgh, 66pp.

    Google Scholar 

  • Adeloye, A. J. and Montaseri, M.: 1998, ‘Adaptation of a single reservoir technique for multiple reservoir storage-yield-reliability analysis’, in Zebidi, H. (ed.), Water: a looming crisis? Proc. Int. Conf. on world water resources at the beginning of the 21st Century, UNESCO, Paris, pp.349–355.

  • Adeloye, A. J., Montaseri, M., and Garmann, C.: 2001, ‘Curing the misbehaviour of reservoir capacity statistics by controlling shortfall during failures using the modified sequent algorithm’, Water Resour. Res. 37(1), 73–82.

    Article  Google Scholar 

  • Arnell, N. W.: 1999, ‘The effect of climate change on hydrological regimes in Europe: a continental perspective’. Global Environmental Change 9, 5–23

    Article  Google Scholar 

  • Boer, G. J., Flato, G. M., Reader, M. C., and Ramsden, D.: 2000, ‘A transient climate change simulation with greenhouse gas and aerosol forcing: experimental design and comparison with the instrumental record for the 20th century’, Climate Dynamics 16, 405–425.

    Article  Google Scholar 

  • Cameron, D. S., Beven, K. J., Tawn, J., Blazkova, S., and Naden, P.: 2000a, ‘Flood frequency estimation for a gauged upland catchment (with uncertainty)’, J. Hydrology 219, 169–187.

    Article  Google Scholar 

  • Cameron D. S., Beven, K., and Naden, P.: 2000b, ‘Flood frequency estimation under climate change (with uncertainty)’. Hydrology and Earth System Sciences 4(3), 393–405

    Article  Google Scholar 

  • Carter, T. R., Parry, M. L., Nishioka, S., and Harasawa, H.: 1994, ‘Technical guidelines for assessing climate change impacts and adaptations’, Intergovernmental Panel on Climate Change, University College London, Centre for Global Environmental Research, Tsukuba.

    Google Scholar 

  • Carter, T. R., Hulme, M., and Lal, M.: 1999, Guidelines on the use of scenario data for climate impact and adaptation assessment, version 1, Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment.

  • Chiew, F. H. S. and McMahon, T. A.: 1994, ‘Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments’, J. Hydrol. 153(1–4), 383–416.

    Article  Google Scholar 

  • Chiew, F. H. S., Whetton, P. H., McMahon, T. A., and Pittock, A. B.: 1995, ‘Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments’, J. Hydrol. 167(1–4), 121–147.

    Article  Google Scholar 

  • Chow, Ven Te., Maidment, D. R., and Mays, L. W.: 1988, Applied Hydrology, McGraw-Hill series in water resources and environmental engineering, McGraw-Hill.

  • Doherty and Mearns: 1999, A comparison of simulations of current climate from two coupled atmosphere-ocean GCMs against observations and evaluation of their future climates. Report to the NIGEC National Office. National Center for Atmospheric Research, Boulder, Colorado, 47 pp.

  • Dvorak, V., Hladny, J., and Kasparek, L.: 1997, ‘Climate change, hydrology and water resources impact and adaptation for selected river basins in the Czech Republic’, Climatic Change 36, 93–106.

    Article  Google Scholar 

  • Faulkner, D. S., Arnell, N. W., and N. S. Reynard.: 1997, ‘Everyday aspects of climate change in Europe’, BHS 6th National Hydrology Symposium, Salford, UK.

  • Filliben, J. J.: 1975, The probability plot correlation coefficient test for normality, Technometrics 17(1).

  • Flato, G. M., Boer, G. J., Lee, W. G., McFarlane, N. A., Ramsden, D., Reader, M. C., and Weaver, A. J.: 2000, ‘The Canadian Centre for Climate Modelling and Analysis Global Coupled Model and its climate’, Climate Dynamics 16, 451–467.

    Article  Google Scholar 

  • Gordon, H. B. and O'Farrel, S. P.: 1997, ‘Transient climate change in the CSIRO coupled model with dynamic sea ice’, Monthly Weather Review 125, 875–907.

    Article  Google Scholar 

  • Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B., and Wood, R. A.: 2000, ‘The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments’, Climate Dynamics 16, 147–168.

    Article  Google Scholar 

  • Hashimoto, R., Stedinger, J. R., and Loucks, D. P.: 1982, Reliability, resiliency and vulnerability criteria for water resources system performance evaluation. Water Resources Research 18(1).

  • Hirst, A. C., O'Farrell, S. P., and Gordon, H. B.: 2000, ‘Comparison of a coupled ocean-atmosphere model with and without oceanic eddy-induced advection, 1: Ocean spin-up and control integrations’, J. Climate 13(1) 139–163.

    Article  Google Scholar 

  • Holden, J. and Adamson, J., (2002), ‘The Moor-House long-term upland temperature record – new evidence of recent warming’, Weather 57, 119–126.

    Google Scholar 

  • Hulme, M., Mitchell, J., Ingram, W., Lowe, J., Johns, T. C., New, M., and Viner, D.: 1999, ‘Climate change scenarios for global impacts studies’, Glob. Environ. Change 9, S3–S19.

    Article  Google Scholar 

  • Jones, R. G., Noguer, M., Hassell, D. C., Hudson, D, Wilson, S. S., Jenkins, G. J., and Mitchell, J. F. B.: 2004, ‘Generating high resolution climate change scenarios using PRECIS’, Met Office Hadley Centre, Exeter, UK, 40 pp.

    Google Scholar 

  • Lele, S. M.: 1987, ‘Improved algorithms for reservoir capacity calculation incorporating storage-dependent losses and reliability norm’, Water Resour. Res. 23(10), 1819–1823.

    Google Scholar 

  • Loucks, D. P., Stedinger, J. R., and Haith, D. A.: 1981, Water resource systems planning and analysis, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • MAFF (Ministry of Agriculture, Fisheries and Food): 1967, Potential transpiration, Tech. Bull. 16., HMSO.

  • McGuffie, K. and Henderson-Sellers, A.: 2001, ‘Forty Years of Numerical Climate Modelling’, Int. J. Climatol. 21, 1067–1109.

    Article  Google Scholar 

  • McMahon, T. A. and Adeloye, A. J.: 2005, Water Resources Yield, Water Resources Publications, Littleton, Colorado, 234 pp.

    Google Scholar 

  • Mimikou, M. A., Baltas, E., Varanou, E., and Pantazis, K.: 2000, ‘Regional impacts of climate change on water resources quantity and quality indicators’, J. Hydrology 234, 95–109.

    Article  Google Scholar 

  • Mott MacDonald: 1995, Calder area reservoir hydrological records, report prepared for Yorkshire Water Services Ltd., UK, ref. 28918BA01/1/B.

  • Nawaz, N. R. and Adeloye, A. J.: 1999, ‘Evaluation of monthly runoff estimated by a rainfall-runoff regression model reservoir yield assessment’, Hydrological Sci. J. 44(1), 113–134.

    Article  Google Scholar 

  • Nikolaidis, N. P., Hu, H.-L., Ecsedy, C., and Lin, J. D.: 1993, ‘Hydrologic response of freshwater watersheds to climatic variability: model development’, Water Resour. Res. 29(10), 3317–3328.

    Article  Google Scholar 

  • Nikolaidis, N. P., Hu, H-L., and Ecsedy, C.: 1994, ‘Effects of climatic variability on the hydrologic response of a freshwater watershed’, Aquatic Sciences 56(2), 161–178.

    Article  Google Scholar 

  • Penman, H. L.: 1950, ‘Evaporation over the British Isles’, Quart. J. Roy. Met. Soc. LXXVI 330, 372–383.

    Google Scholar 

  • Pitman, A. J. and Chiew, F. H. S.: 1996, ‘Testing a GCM land surface scheme against catchment-scale runoff data’, Climate Dynamics 12(10), 685–699.

    Article  Google Scholar 

  • POST — The UK Parliamentary Office of Science and Technology.: 1995, ‘The 1995 Drought’, Technical Report 71.

  • Prescott, J. A.: 1940, ‘Evaporation from a water surface in relation to solar radiation’, Trans. R. Soc. S. Austr. 64, 114–118.

    Google Scholar 

  • Prudhomme, C., Dörte Jakoba, D., and Svensson, C.: 2003, Uncertainty and climate change impact on the flood regime of small UK catchments, Journal of Hydrology 277, 1–23.

    Article  Google Scholar 

  • Racsko, P., Szeidl, L., and Semenov, M.: 1991, ‘A serial approach to local stochastic weather models’, Ecol. Modelling 57, 27–41.

    Article  Google Scholar 

  • Reungoat, A.: 2000, Rainfall-runoff modelling with MODHYDROLOG, unpublished MSc Thesis, Heriot-Watt University, Edinburgh, UK.

  • Richardson, C. W.: 1981, ‘Stochastic simulation of daily precipitation, temperature and solar radiation’, Water Resour. Res. 17, 182–190.

    Google Scholar 

  • Risbey, J. S. and Stone P. H.: 1996, ‘A case study of the adequacy of GCM simulations for input to regional climate change assessments’, J. Climate 9(7), 1441–1467.

    Article  Google Scholar 

  • Rietveld, M. R.: 1978, ‘A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine’, Agricultural Meteorology 19, 243–252.

    Article  Google Scholar 

  • Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: 2001, ‘Climate elasticity of streamflow in the United States’, Water Resour. Res. 37(6), 1771–1781.

    Article  Google Scholar 

  • Semenov, M. A. and Barrow, E. M.: 1997, ‘Use of a stochastic weather generator in the development of climate change scenarios’, Climatic Change 35(4), 397–414.

    Article  Google Scholar 

  • Semenov, M. A. and Porter, J. R.: 1994, ‘The implications and importance of non-linear responses in modelling of growth and development of wheat’, in Grasman, J. and van Straten, G. (eds.), Predictability and non-linear modelling in natural sciences and economics, Wageningen.

  • Shaw, E. M.: 1994, Hydrology in Practice, Chapman and Hall, London.

    Google Scholar 

  • Shackley, S., Young, P., Parkinson, S., and Wynne, B.: 1998, ‘Uncertainty, complexity and concepts of good science in climate modelling: are GCM's the best tools?’, Climatic Change 38, 159–205.

    Article  Google Scholar 

  • Shuttleworth, W. J.: 1993, ‘Evaporation’, in Maidment, D. R. (ed.), Handbook of hydrology, chapter 4, McGraw Hill Inc.

  • Smith, T. M., Leemans, R., and Shugart, H. H.: 1992, ‘Sensitivity of terrestrial carbon storage to CO2-induced climate change: comparisons of four scenarios based on general circulation models’, Climatic Change 21, 367–384.

    Article  Google Scholar 

  • Smith, J. B. and Hulme, M.: 1998, ‘Climate change scenarios’, in Feenstra (ed.), Handbook on methods for climate change impact assessment and adaptation strategies.

  • Thomas, H. A. and Burden R. P.: 1963, Operations research in water quality management, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Wilby, R. L. and Wigley, T. M. L.: 1997, Downscaling general circulation model output: a review of methods and limitations, Progress in Physical Geography 21(4), 530–548.

    Google Scholar 

  • Valencia, D. and Schaake, J. C.: 1973, ‘Disaggregation processes in stochastic hydrology’, Water Resour. Res. 9(3), 580–585.

    Google Scholar 

  • Von Storch, H., Zorita, E., and Cubasch, U.: 1993, ‘Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime’, J. Climate 6(6), 1161–1171.

    Article  Google Scholar 

  • Wolock, D. M. and McCabe, G. J.: 1999, ‘Estimates of runoff using water-balance and atmospheric general circulation models’, J. Amer. Water Resour. Assoc 35, 1341–1350.

    Google Scholar 

  • Wood, A. W., Lettenmaier, D. P., and Palmer, R. N. (1997) Assessing climate change implications for water reservoirs planning, Climatic Change 37, 203–228.

    Article  Google Scholar 

  • Yorkshire Water RRDY: 1991, Re-assessment of resource design yield (RRDY) project 3: Calder area, technical report, 1, prepared by W. S. Atkins Ltd, England.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Nawaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawaz, N.R., Adeloye, A.J. Monte Carlo Assessment of Sampling Uncertainty of Climate Change Impacts on Water Resources Yield in Yorkshire, England. Climatic Change 78, 257–292 (2006). https://doi.org/10.1007/s10584-005-9043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-9043-9

Keywords

Navigation