Skip to main content

Advertisement

Log in

Climate Change to the End of the Millennium

  • An Editorial Review Essay
  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Anthropogenic climate change will continue long after anthropogenic CO2 emissions cease. Atmospheric CO2, global warming and ocean circulation will approach equilibrium on the millennial timescale, whereas thermal expansion of the ocean, ice sheet melt and their contributions to sea level rise are unlikely to be complete. Atmospheric CO2 in year 3000 depends non-linearly on the total amount of CO2 emitted and is very likely to exceed the present level of ∼380 ppmv. CO2 is doubled for ∼2500 GtC emitted, quadrupled if all ∼5000 GtC of conventional fossil fuel resources are emitted, and increases by a factor of ∼32 if a further 20,000 GtC of exotic fossil fuel resources are emitted. Global warming in year 3000 will also depend on climate sensitivity to doubling CO2, which is most probably ∼3 C but highly uncertain. Thermal expansion will contribute 0.5–2 m to millennial sea level rise for each doubling of CO2. The Greenland ice sheet could melt completely within the millennium under > 8×CO2, adding a further ∼7 m to sea level. The rate of melt depends on the magnitude of forcing above a regional warming threshold of 1–3 C. The West Antarctic ice sheet could be threatened by 4–10 C local warming, and its potential contribution to millennial sea level rise exceeds current maximum estimates of ∼1 m. The fate of the ocean thermohaline circulation may depend on the rate as well as the magnitude of forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, D., Kheshgi, H., and Maier-Reimer, E.: 1998, ‘Dynamics of fossil fuel CO2 neutralization by marine CaCO3’, Glob. Biogeochem. Cycl. 12, 259–276.

    Article  Google Scholar 

  • Bacastow, R. and Bjorkstrom, A.: 1981, ‘Comparison of ocean models for the carbon cycle’, in Bolin, B. (ed.), Carbon Cycle Modelling – SCOPE 16, John Wiley & Sons, Chichester, pp. 29– 79.

    Google Scholar 

  • Berger, A. and Loutre, M. F.: 2002, ‘An exceptionally long interglacial ahead?’ Science 297, 1287–1288.

    Article  PubMed  Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G.: 2001, ‘Persistent solar influence on North Atlantic Climate during the Holocene’, Science 294, 2130–2136.

    Article  PubMed  Google Scholar 

  • Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: 1997, ‘A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial Climates’, Science 278, 1257–1266.

    Article  Google Scholar 

  • Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., and Pachur, H.-J.: 1999, ‘Simulation of an abrupt change in Saharan vegetation in the mid-Holocene’, Geophys. Res. Lett. 26, 2037–2040.

    Article  Google Scholar 

  • Collins, M.: 2000, ‘Understanding uncertainties in the response of ENSO to Greenhouse warming’, Geophys. Res. Lett. 27, 3509–3513.

    Article  Google Scholar 

  • Cuffey, K. M. and Marshall, S. J.: 2000, ‘Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet’, Nature 404, 591–594.

    Article  PubMed  Google Scholar 

  • Fichefet, T., Poncin, C., Goosse, H., Huybrechts, P., Janssens, I., and Le Treut, H.: 2003, ‘Implications of changes in freshwater flux from the Greenland ice sheet for the climate of the 21st century’, Geophys. Res. Lett. 30, 1911, doi:10.1029/2003GL017826.

  • Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R., and Webster, M. D.: 2002, ‘Quantifying uncertainties in climate system properties with the use of recent climate observations’, Science 295, 113–117.

    Article  PubMed  Google Scholar 

  • Ganopolski, A., Petoukhov, V., Rahmstorf, S., Brovkin, V., Claussen, M., Eliseev, A., and Kubatzki, C.: 2001, ‘CLIMBER-2: A climate system model of intermediate complexity. Part II: Model sensitivity’, Climate Dynamics 17, 735–751.

    Article  Google Scholar 

  • Gregory, J. M., Huybrechts, P., and Raper, S. C. B.: 2004, ‘Threatened loss of the Greenland ice-sheet’, Nature 428, 616.

    Article  Google Scholar 

  • Gregory, J. M., Stouffer, R. J., Raper, S. C. B., Stott, P. A., and Rayner, N. A.: 2002, ‘An observationally based estimate of the climate sensitivity’, Journal of Climate 15, 3117–3121.

    Article  Google Scholar 

  • Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A., and Tausnev, N.: 2005, ‘Earth’s energy imbalance: Confirmation and implications’, Science 308, 1431–1435.

    Article  PubMed  Google Scholar 

  • Hansen, J. E.: 2005, ‘A slippery slope: How much global warming constitutes “dangerous anthropogenic interference”?’ Clim. Change 68, 269–279.

    Article  Google Scholar 

  • Hargreaves, J. C., Annan, J. D., Edwards, N. R., and Marsh, R.: 2004, ‘An efficient climate forecasting method using an intermediate complexity Earth system model and the ensemble Kalman Filter’, Climate Dynamics, 745–760.

  • Harvey, L. D. D. and Huang, Z.: 1995, ‘Evaluation of the potential impact of methane clathrate destabilization on future global warming’, J. Geophys. Res. 100, 2905–2926.

    Article  Google Scholar 

  • Hasselmann, K., Hasselmann, S., Giering, R., Ocana, V., and Storch, H. V.: 1997, ‘Sensitivity study of optimal CO2 emissions paths using a simplified structural integrated assessment model (SIAM)’, Clim. Change 37, 345–386.

    Article  Google Scholar 

  • Hasselmann, K., Latif, M., Hooss, G., Azar, C., Edenhofer, O., Jaeger, C. C., Johannessen, O. M., Kemfert, C., Welp, M., and Wokaun, A.: 2003, ‘The challenge of long-term climate change’, Science 302, 1923–1925.

    Article  PubMed  Google Scholar 

  • Hooss, G., Voss, R., Hasselmann, K., Maier-Reimer, E., and Joos, F.: 2001, ‘A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS)’, Climate Dynamics 18, 189–202.

    Article  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Linden, P. J.v.d., Dai, X., Maskell, K., and Johnson, C. A.: 2001, Climate Change 2001: The Scientific Basis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Houghton, J. T., Filho, L. G. M., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K.: 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J.: 1990, Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Huybrechts, P. and De Wolde, J.: 1999, ‘The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming’, Journal of Climate 12, 2169–2188.

    Article  Google Scholar 

  • Hvidberg, C. S.: 2000, ‘When Greenland ice melts’, Nature 404, 551–552.

    Article  PubMed  Google Scholar 

  • Ichii, K., Matsui, Y., Murakami, K., Mukai, T., Yamaguchi, Y., and Ogawa, K.: 2003, ‘A simple global carbon and energy coupled cycle model for global warming simulation: sensitivity to the light saturation effect’, Tellus 55B, 676–691.

    Google Scholar 

  • Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B., Senior, C. A., Tett, S. F. B., and Wood, R. A.: 1997, ‘The Second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation’, Climate Dynamics 13, 103–134.

    Article  Google Scholar 

  • Joos, F., Bruno, M., Fink, R., Siegenthaler, U., Stocker, T. F., LeQuere, C., and Sarmiento, J. L.: 1996, ‘An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake’, Tellus 48B, 397–417.

    Google Scholar 

  • Joos, F., Gerber, S., Prentice, I. C., Otto-Bliesner, B. L., and Valdes, P. J.: 2004, ‘Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum’, Glob. Biogeochem. Cycl. 18, GB2002.

  • Knutti, R. and Stocker, T. F.: 2000, ‘Influence of the thermohaline circulation on projected sea level rise’, Journal of Climate 13, 1997–2001.

    Article  Google Scholar 

  • Knutti, R. and Stocker, T. F.: 2002, ‘Limited predictability of the future thermohaline circulation close to an instability threshold’, Journal of Climate 15, 179–186.

    Article  Google Scholar 

  • Knutti, R., Stocker, T. F., Joos, F., and Plattner, G.-K.: 2002, ‘Constraints on radiative forcing and future climate change from observations and climate model ensembles’, Nature 416, 719–723.

    Article  PubMed  Google Scholar 

  • Lenton, T. M.: 2000, ‘Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model’, Tellus 52B, 1159–1188.

    Google Scholar 

  • Lenton, T. M. and Cannell, M. G. R.: 2002, ‘Mitigating the rate and extent of global warming’, Clim. Change 52, 255–262.

    Article  Google Scholar 

  • Maier-Reimer, E. and Hasselmann, K.: 1987, ‘Transport and storage of CO2 in the ocean - an inorganic ocean-circulation carbon cycle model’, Climate Dynamics 2, 63–90.

    Article  Google Scholar 

  • Manabe, S. and Stouffer, R. J.: 1993, ‘Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system’, Nature 364, 215–218.

    Article  Google Scholar 

  • Manabe, S., Stouffer, R. J., Spelman, M. J., and Bryan, K.: 1991, ‘Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response’, Journal of Climate 4, 785–818.

    Article  Google Scholar 

  • Manabe, S., Wetherald, R. T., Milly, P. C. D., Delworth, T. L., and Stouffer, R. J.: 2004, ‘Century-scale change in water availability: CO2-quadrupling experiment’, Clim. Change 64, 59–76.

    Article  Google Scholar 

  • Mann, M. E. and Jones, P. D.: 2003, ‘Global surface temperatures over the past two millennia’, Geophys. Res. Lett. 15, 1820, doi: 10.1029/2003GL017814.

  • Marchal, O., Stocker, T. F., and Joos, F.: 1998, ‘A latitude-depth, circulation-biogeochemical ocean model for paleoclimate studies. Development and sensitivities’, Tellus 50B, 290– 316.

    Google Scholar 

  • Marland, G., Boden, T. A., Andres, R. J., Brenkert, A. L., and Johnston, C. A.: 1998, ‘Global, regional, and national fossil fuel CO2 emissions’, Trends: A Compendium of Data on Global Change. Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A., Carbon Dioxide Information Analysis Center.

  • Marsh, R. J., Yool, A., Lenton, T. M., Gulamali, M. Y., Edwards, N. R., Shepherd, J. G., Krznaric, M., Newhouse, S., and Cox, S. J.: 2004, ‘Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model’, Climate Dynamics 23, 761–777.

    Article  Google Scholar 

  • Mitrovica, J. X., Tamislea, M. E., Davis, J. L., and Milne, G. A.: 2001, ‘Recent mass balance of polar ice sheets inferred from patterns of sea-level change’, Nature 409, 1026–1029.

    Article  PubMed  Google Scholar 

  • NorthGRIP: 2004, ‘High-resolution record of Northern Hemisphere climate extending into the last interglacial period’, Nature 431, 147–151.

    Article  PubMed  Google Scholar 

  • Oppenheimer, M.: 1998, ‘Global warming and the stability of the West Antarctic ice sheet’, Nature 393, 325–332.

    Article  Google Scholar 

  • Oppenheimer, M. and Alley, R. B.: 2004, ‘The West Antarctic ice sheet and long term climate policy’, Clim. Change 64, 1–10.

    Article  Google Scholar 

  • Petoukhov, V., Ganopolski, A., Brovkin, V., Claussen, M., Eliseev, A., Kubatzki, C., and Rahmstorf, S.: 2000, ‘CLIMBER-2: A climate system model of intermediate complexity: Part I: model description and performance for present climate’, Climate Dynamics 16, 1–17.

    Article  Google Scholar 

  • Rahmstorf, S. and Ganopolski, A.: 1999, ‘Long-term global warming scenarios computed with an efficient coupled climate model’, Clim. Change 43, 353–367.

    Article  Google Scholar 

  • Raper, S. C. B., Gregory, J. M., and Osborn, T. J.: 2000, ‘Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results’, Climate Dynamics 17, 601–613.

    Article  Google Scholar 

  • Rignot, E. and Thomas, R. H.: 2002, ‘Mass balance of polar ice sheets’, Science 297, 1502– 1506.

    Article  PubMed  Google Scholar 

  • Ruddiman, W. F.: 2003, ‘The anthropogenic greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.

    Article  Google Scholar 

  • Saltzman, B.: 2002, Dynamical Paleoclimatology, Academic Press, London.

    Google Scholar 

  • Schmittner, A. and Stocker, T. F.: 1999, ‘The stability of the thermohaline circulation in global warming experiments’, Journal of Climate 12, 1117–1133.

    Article  Google Scholar 

  • Siegenthaler, U. and Joos, F.: 1992, ‘Use of a simple model for studying oceanic tracer distributions and the global carbon cycle’, Tellus 44B, 186–207.

    Google Scholar 

  • Stainforth, D. A., Alna, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe, A. J., and Allen, M. R.: 2005, ‘Uncertainty in predictions of the climate response to rising levels of greenhouse gases’, Nature 433, 403–406.

    Article  Google Scholar 

  • Stocker, T. F. and Schmittner, A.: 1997, ‘Influence of CO2 emission rates on the stability of the thermohaline circulation’, Nature 388, 862–865.

    Article  Google Scholar 

  • Stocker, T. F., Wright, D. G., and Mysak, L. A.: 1992, ‘A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies’, Journal of Climate 5, 773–797.

    Article  Google Scholar 

  • Stouffer, R. J. and Manabe, S.: 1999, ‘Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase’, Journal of Climate 12, 2224– 2237.

    Article  Google Scholar 

  • Stouffer, R. J. and Manabe, S.: 2003, ‘Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration’, Climate Dynamics 20, 759–773.

    Article  Google Scholar 

  • Thomas, R., Rignot, E., Casassa, G., Kanagaratnam, P., Acuña, C., Akins, T., Brecher, H., Frederick, E., Gogineni, P., Krabill, W., Manizade, S., Ramamoorthy, H., Rivera, A., Russell, R., Sonntag, J., Swift, R., Yungel, J., and Zwally, J.: 2004, ‘Accelerated sea-level rise from West Antarctica’, Science 306, 255–258.

    Article  PubMed  Google Scholar 

  • Toniazzo, T., Gregory, J. M., and Huybrechts, P.: 2004, ‘Climatic impact of a Greenland deglaciation and its possible irreversibility’, Journal of Climate 17, 21–33.

    Article  Google Scholar 

  • Voss, R. and Mikolajewicz, U.: 2001, ‘Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG’, Climate Dynamics 17, 45–60.

    Article  Google Scholar 

  • Walker, J. C. G. and Kasting, J. F.: 1992, ‘Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide’, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 97, 151–189.

    Article  Google Scholar 

  • Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F., Holland, M. M., McFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: 2001, ‘The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates’, Atmosphere-Ocean 39.

  • Weaver, A. J. and Hillaire-Marcel, C.: 2004, ‘Global warming and the next ice age’, Science 304, 400–402.

    Article  PubMed  Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1992, ‘Implications for climate and sea level of revised IPCC emissions scenarios’, Nature 357, 293–300.

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: 2001, ‘Trends, rhythms, and aberrations in global climate 65 Ma to present’, Science 292, 686–693.

    Article  PubMed  Google Scholar 

  • Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.: 2002, ‘Surface melt-induced acceleration of Greenland ice-sheet flow’, Science 297, 218–222.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Lenton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenton, T.M. Climate Change to the End of the Millennium. Climatic Change 76, 7–29 (2006). https://doi.org/10.1007/s10584-005-9022-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-9022-1

Keywords

Navigation