Skip to main content
Log in

Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Reptiles, as the sister group to birds and mammals, are particularly valuable for comparative genomic studies among amniotes. The Australian central bearded dragon (Pogona vitticeps) is being developed as a reptilian model for such comparisons, with whole-genome sequencing near completion. The karyotype consists of 6 pairs of macrochromosomes and 10 pairs microchromosomes (2n = 32), including a female heterogametic ZW sex microchromosome pair. Here, we present a molecular cytogenetic map for P. vitticeps comprising 87 anchor bacterial artificial chromosome clones that together span each macro- and microchromosome. It is the first comprehensive cytogenetic map for any non-avian reptile. We identified an active nucleolus organizer region (NOR) on the sub-telomeric region of 2q by mapping 18S rDNA and Ag-NOR staining. We identified interstitial telomeric sequences in two microchromosome pairs and the W chromosome, indicating that microchromosome fusion has been a mechanism of karyotypic evolution in Australian agamids within the last 21 to 19 million years. Orthology searches against the chicken genome revealed an intrachromosomal rearrangement of P. vitticeps 1q, identified regions orthologous to chicken Z on P. vitticeps 2q, snake Z on P. vitticeps 6q and the autosomal microchromosome pair in P. vitticeps orthologous to turtle Pelodiscus sinensis ZW and lizard Anolis carolinensis XY. This cytogenetic map will be a valuable reference tool for future gene mapping studies and will provide the framework for the work currently underway to physically anchor genome sequences to chromosomes for this model Australian squamate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APTX :

Aprataxin

ATP5A1 :

ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle

BAC:

Bacterial artificial chromosome

BCL6 :

B cell CLL/lymphoma 6

BLAST:

Basic Local Alignment Search Tool

BLAT:

BLAST-like alignment tool

CA10 :

Carbonic anhydrase X

CHD1 :

Chromodomain helicase DNA-binding protein 1

CTBP2 :

C-terminal binding protein 2

CTNNB1 :

Catenin (cadherin-associated protein), beta 1, 88 kDa

DAPI:

4′,6-Diamidino-2-phenylindole

DDX58 :

DEAD (Asp-Glu-Ala-Asp) box polypeptide 58

DMRT1 :

Doublesex and mab-3-related transcription factor 1

dUTP:

2′-Deoxyuridine 5′-triphosphate

EIF3H :

Eukaryotic translation initiation factor 3, subunit H

FAM83B :

Family with sequence similarity 83, member B

FBRSL1 :

Fibrosin-like 1

FISH:

Fluorescence in situ hybridization

GHR :

Growth hormone receptor

GMPPA :

GDP-mannose pyrophosphorylase A

HCRTR2 :

Hypocretin (orexin) receptor 2

HMGCLL1 :

3-Hydroxymethyl-3-methylglutaryl-CoA lyase-like 1

IBSP :

Integrin-binding sialoprotein

IPO7 :

Importin 7

IQSEC3 :

IQ motif and Sec7 domain 3

KAT2B :

K(lysine) acetyltransferase 2B

KAT7 :

K(lysine) acetyltransferase 7

KLF6 :

Kruppel-like factor 6

NAV2 :

Neuron navigator 2

NOR:

Nucleolus organizer region

NPRL3 :

Nitrogen permease regulator-like 3

PSMA2 :

Proteasome (prosome, macropain) subunit, alpha type, 2

RAB5A :

RAB5A, member RAS oncogene family

rDNA:

Ribosomal DNA

RRM1 :

Ribonucleotide reductase M1

SRY :

Sex-determining region Y

TAX1BP1 :

Tax1 (human T-cell leukemia virus type I) binding protein 1

TMEM41B :

Transmembrane protein 41B

TNFRSF11B :

Tumor necrosis factor receptor superfamily, member 11b

TTN :

Titin

WAC :

WW domain-containing adaptor with coiled coil

ZNF143 :

Zinc finger protein 143

References

  • Ahl E (1926) Neue Eidechsen und Amphibien. Zoologischer Anzeiger 67:186–192

    Google Scholar 

  • Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477:587–591

    Article  PubMed  Google Scholar 

  • Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA, Fulton RS, Graves TA, Hillier LDW, Mardis ER, McPherson JD (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  Google Scholar 

  • Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC (2012) More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett 8:783–786

    Article  PubMed  Google Scholar 

  • Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Bouffard P, Burt DW, Crasta O, Crooijmans RPMA, Cooper K (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biology 8:e1000475

    Article  PubMed  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry Part A: The Journal of the International Society for Analytical Cytology 51:127

    CAS  Google Scholar 

  • Ezaz T, Moritz B, Waters P, Marshall Graves JA, Georges A, Sarre SD (2009a) The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Res 17:965–973

    Article  PubMed  CAS  Google Scholar 

  • Ezaz T, Quinn AE, Miura I, Sarre SD, Georges A, Graves JAM (2005) The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res 13:763–776

    Article  PubMed  CAS  Google Scholar 

  • Ezaz T, Quinn AE, Sarre SD, O’Meally D, Georges A, Marshall Graves JA (2009b) Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards. Chromosome Res 17:91–98

    Article  PubMed  CAS  Google Scholar 

  • Fujita MK, Edwards SV, Ponting CP (2011) The Anolis lizard genome: an amniote genome without isochores. Genome Biol Evol 3:974

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971–2972

    Article  PubMed  CAS  Google Scholar 

  • Hillier LDW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MAM, Delany ME (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  CAS  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    Article  PubMed  CAS  Google Scholar 

  • Hugall AF, Foster R, Hutchinson M, Lee MSY (2008) Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: implications for morphological evolution and biogeography. Biol J Linn Soc 93:343–358

    Article  Google Scholar 

  • Kasai F, O’Brien PCM, Ferguson-Smith MA (2012) Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: close similarity to chicken. Biol Lett 8:631–635

    Article  PubMed  Google Scholar 

  • Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C (2009) The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet Genome Res 125:125–131

    Article  PubMed  CAS  Google Scholar 

  • Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y (2007) Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117:92–102

    Article  PubMed  CAS  Google Scholar 

  • Kohn M, Högel J, Vogel W, Minich P, Kehrer-Sawatzki H, Graves JAM, Hameister H (2006) Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet 22:203–210

    Article  PubMed  CAS  Google Scholar 

  • Kuraku S, Ishijima J, Nishida-Umehara C, Agata K, Kuratani S, Matsuda Y (2006) cDNA-based gene mapping and GC 3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Res 14:187–202

    Article  PubMed  CAS  Google Scholar 

  • MacCulloch RD, Upton DE, Murphy RW (1996) Trends in nuclear DNA content among amphibians and reptiles. Comp Biochem Physiol B Biochem Mol Biol 113:601–605

    Article  Google Scholar 

  • Martinez PA, Ezaz T, Valenzuela N, Georges A, Marshall Graves JA (2008) An XX/XY heteromorphic sex chromosome system in the Australian chelid turtle Emydura macquarii: a new piece in the puzzle of sex chromosome evolution in turtles. Chromosome Res 16:815–825

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Kuraku S, Tarui H, Nishimura O, Nishida C, Agata K, Kumazawa Y, Matsuda Y (2012) Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC3 profiling in snake. BMC Genomics 13:604

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, Isobe T, Ando J, Fujiwara A, Hirao Y, Nishimura O (2005) Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Res 13:601–615

    Article  PubMed  CAS  Google Scholar 

  • Meyne J, Baker RJ, Hobart HH, Hsu T, Ryder OA, Ward OG, Wiley JE, Wurster-Hill DH, Yates TL, Moyzis RK (1990) Distribution of non-telomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosoma 99:3–10

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, Garber M, Gentles AJ, Goodstadt L, Heger A (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447:167–177

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265

    Article  PubMed  CAS  Google Scholar 

  • O’Meally D, Miller H, Patel H, Marshall Graves JA, Ezaz T (2009) The first cytogenetic map of the tuatara, Sphenodon punctatus. Cytogenet genome res 127:213–223

    Article  PubMed  Google Scholar 

  • O’Meally D, Ezaz T, Georges A, Sarre SD, Graves JA (2012) Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res 20:7–19

    Google Scholar 

  • Olmo E, Signorino G (2005) Chromorep: a reptile chromosomes database. http://chromorep.univpm.it. Accessed 7 May 2013

  • Organ CL, Janes DE (2008) Evolution of sex chromosomes in Sauropsida. Integr Comp Biol 48:512–519

    Article  PubMed  Google Scholar 

  • Patel VS, Ezaz T, Deakin JE, Marshall Graves JA (2010) Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution. Chromosome Res 18:897–907

    Article  PubMed  CAS  Google Scholar 

  • Paull D, Williams EE, Hall WP (1976) Lizard karyotypes from the Galapagos Islands: chromosomes in phylogeny and evolution. Breviora 441:1–31

    Google Scholar 

  • Pokorná M, Giovannotti M, Kratochvíl L, Caputo V, Olmo E, Ferguson-Smith MA, Rens W (2012) Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting. Chromosoma 121:409–418

    Google Scholar 

  • Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, O’Brien PCM, Caputo V, Olmo E, Ferguson-Smith MA, Rens W (2011) Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120:455–468

    Article  PubMed  Google Scholar 

  • Porter CA, Hamilton MJ, Sites Jr JW, Baker RJ (1991) Location of ribosomal DNA in chromosomes of squamate reptiles: systematic and evolutionary implications. Herpetologica 47:271–280

    Google Scholar 

  • Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JAM (2007) Temperature sex reversal implies sex gene dosage in a reptile. Science 316:411–411

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Nergadze S, Santagostino M, Giulotto E (2008) Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenet Genome Res 122:219–228

    Article  PubMed  CAS  Google Scholar 

  • Sarre SD, Ezaz T, Georges A (2011) Transitions between sex-determining systems in reptiles and amphibians. Annu Rev Genom Hum Genet 12:391–406

    Article  CAS  Google Scholar 

  • Sarre SD, Georges A, Quinn A (2004) The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays 26:639–645

    Article  PubMed  Google Scholar 

  • Shedlock AM, Edwards SV (2009) Amniotes (amniota). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, New York, pp 375–379

    Google Scholar 

  • Srikulnath K, Nishida C, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y (2009) Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes). Chromosome Res 17:975–986

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Nishida C, Tarui H, Ishishita S, Takagi C, Nishimura O, Ishijima J, Ota H, Kosaka A, Matsubara K (2012) Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS One 7:e53027

    Article  PubMed  CAS  Google Scholar 

  • Wakefield MJ, Graves JAM (2003) The kangaroo genome. EMBO Rep 4:143–147

    Article  PubMed  CAS  Google Scholar 

  • Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LDW, Künstner A, Searle S, White S, Vilella AJ, Fairley S (2010) The genome of a songbird. Nature 464:757–762

    Article  PubMed  CAS  Google Scholar 

  • Warren WC, Hillier LDW, Graves JAM, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183

    Article  PubMed  CAS  Google Scholar 

  • Witten G (1983) Some karyotypes of Australian agamids (Reptilia: Lacertilia). Aust J Zool 31:533–540

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by an ARC DP awarded to SD, AG and Scott Edwards, as was the purchase of the P. vitticeps BAC Library. This work was undertaken by MY as a Bachelor of Applied Science Honours with the Institute of Applied Ecology at the University of Canberra. We would like to thank Jacqui Richardson and Alistair Zealey for their care of captive animals and Juliet Ward for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ezaz.

Additional information

Responsible Editor: Walther Traut.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, M.J., O’Meally, D., Sarre, S.D. et al. Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Chromosome Res 21, 361–374 (2013). https://doi.org/10.1007/s10577-013-9362-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9362-z

Keywords

Navigation