Skip to main content
Log in

Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Thirteen common wheat “Chinese Spring” (CS)-Thinopyrum junceum addition lines and three common wheat “Fukuhokomuji”(Fuku)-Elymus rectisetus addition lines were characterized and verified as disomic additions of a Th. junceum or E. rectisetus chromosome in the wheat backgrounds by fluorescent genomic in situ hybridization. Another Fuku-E. rectisetus addition line, A1048, was found to contain multiple segregating E. rectisetus chromosomes. Seven partial CS-Th. junceum amphiploids were identified to combine 12–16 Th. junceum chromosomes with CS wheat chromosomes. The disomic addition lines AJDAj5, 7, 8, 9, and HD3508 were identified to contain a Th. junceum chromosome in homoeologous group 1. Two of them, AJDAj7 and AJDAj9, had the same Th. junceum chromosome. AJDAj2, 3, and 4 contained a Th. junceum chromosome in group 2, HD3505 in group 4, AJDAj6 and AJDAj11 in group 5, and AJDAj1 probably in group 6. The disomic addition lines A1026 and A1057 were identified to carry an E. rectisetus chromosome in group 1 and A1034 in group 5. E. rectisetus chromosomes in groups 1–6 were detected in A1048. The homoeologous group of the Th. junceum chromosome in HD3515 could not be determined in this study. Several Th. junceum and E. rectisetus chromosomes in the addition lines were found to contain genes for resistance to Fusarium head blight, tan spot, Stagonospora nodorum blotch, and stem rust (Ug99 races). Understanding of the homoeology of the Th. junceum and E. rectisetus chromosomes with wheat will facilitate utilization of the favorable genes on these alien chromosomes in wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FGISH:

Fluorescent genomic in situ hybridization

FITC:

Fluorescein isothiocyanate

RFLPs:

Restriction fragment length polymorphisms

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

A-PAGE:

Acid-polyacrylamide gel electrophoresis

HMW:

High molecular weight glutenin subunits

LMW:

Low molecular weight glutenin subunits

FHB:

Fusarium head blight

PIS:

Percentage of infected spike

NIS:

Number of infected spike

SNB:

Stagonospora nodorum blotch

References

  • Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D et al (2003) Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates along chromosome arms. Proc Natl Acad Sci USA 100:10836–10841

    Article  PubMed  CAS  Google Scholar 

  • Bie TD, Cao YP, Chen PD (2007) Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durumHaynaldia villosa amphiploid. J Integr Plant Biol 49:1619–1626

    Article  Google Scholar 

  • Cai X, Jones SS, Murray TD (1998) Molecular cytogenetic characterization of Thinopyrum and wheat-Thinopyrum translocated chromosomes in a wheat-Thinopyrum amphiploid. Chromosom Res 6:183–189

    Article  CAS  Google Scholar 

  • Cai X, Chen PD, Xu SS, Oliver RE, Chen X (2005) Utilization of alien genes to enhance Fusarium head blight resistance in wheat: a review. Euphytica 142:309–318

    Article  Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Charpentier A (1992) Production of disomic addition lines and partial amphiploids of Thinopyrum junceum on wheat. C R Acad Sci Paris 315(III):551–557

    Google Scholar 

  • Chen Q, Lu YL, Jahier J, Bernard M (1994) Identification of wheat-Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes. Theor Appl Genet 89:70–75

    CAS  Google Scholar 

  • Chen PD, Liu W, Yuan J, Wang X, Zhou B, Wang S, Zhang S, Feng Y, Yang B, Liu G, Liu D, Qi L, Zhang P, Friebe B, Gill BS (2005) Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor Appl Genet 111:941–948

    Article  PubMed  Google Scholar 

  • Chen S, Chen PD, Wang X (2008) Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line. Sci China Ser C Life Sci 51:346–352

    Article  Google Scholar 

  • Cox TS (1998) Deepening the wheat gene pool. J Crop Prod 1:1–25

    Article  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A et al (1996) Genetic map of diploid wheat, Triticum monococcum and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dvorak J, Diterlizzi P, Zhang HB, Resta P (1993) The evolution of polyploid wheats—identification of the A-genome donor species. Genome 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosom Res 16:1097–1105

    Article  CAS  Google Scholar 

  • Forster BP, Reader SM, Forsyth SA, Koebner RMD, Miller TE, Gale MD, Cauderon Y (1987) An assesment of the homoeology of six Agropyron intermedium chromosomes added to wheat. Genet Res 50:91–97

    Article  CAS  Google Scholar 

  • Friebe B, Jiang J, Knott DR, Gill BS (1994) Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci 34:400–404

    Article  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Friebe B, Zhang P, Linc G, Gill BS (2005) Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogen Genome Res 109:293–297

    Article  CAS  Google Scholar 

  • Gale MD, Miller TE (1987) The introduction of alien genetic variation into wheat. In: Lupton FGH (ed) Wheat breeding, its scientific basis. Chapman and Hall, London, pp 173–210

    Google Scholar 

  • Gill KS, Lubbers EL, Raupp WJ, Cox TS, Gill BS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374

    Article  Google Scholar 

  • Gupta RB, Shepherd KW (1990) Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor Appl Genet 80:65–74

    CAS  Google Scholar 

  • Hart GE (1996) Genome analysis in Triticeae using isozymes. In: Juahar PP (ed) Methods of genome analysis in plant. CRC Press, Boca Raton, pp 195–209

    Google Scholar 

  • Huang S, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Article  Google Scholar 

  • Khan K, Frohberg R, Olson T, Huckle L (1989) Inheritance of gluten protein components of high-protein hard red spring wheat lines derived from Triticum turgidum var. dicoccoides. Cereal Chem 66:397–401

    CAS  Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of vulgare wheat. Ag Hort (Tokyo) 19:889–890

    Google Scholar 

  • Kishii M, Yamada T, Sasakuma T, Tsujimoto H (2004) Production of wheat–Leymus racemosus chromosome addition lines. Theor Appl Genet 109:255–260

    Article  PubMed  CAS  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal H, Kaur S, Bowden R, Gill BS (2007) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Metakovsky EV (1991) Gliadin allele identification in common wheat II. Catalogue of gliadin alleles in common wheat. J Genet Breed 45:325–344

    Google Scholar 

  • Miller TE, Reader SM (1987) A guide to the homoeology of chromosomes within the Triticeae. Theor Appl Genet 74:214–217

    Article  Google Scholar 

  • Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS & Reitz LP (eds) Wheat and wheat improvement. American Society of Agronomy, Madison, pp. 19–87

  • Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  PubMed  CAS  Google Scholar 

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) DNA marker-assisted chromosome engineering of wheat carrying stem rust resistance gene Sr39 derived from Aegilops speltoides. Genetics 187:1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Oliver RE, Cai X, Xu SS, Chen X, Stack RW (2005) Wheat-alien species derivatives: a novel source of resistance to Fusarium head blight in wheat. Crop Sci 45:1353–1360

    Article  Google Scholar 

  • Oliver RE, Cai X, Wang RC, Xu SS, Friesen TL (2008) Resistance to tan spot and Stagonospora nodorum blotch in wheat-alien species derivatives. Plant Dis 92:150–157

    Article  Google Scholar 

  • Payne PI, Holt LM, Jackson EA, Law CN, Damania AB (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Phil Trans R Soc Lond B 304:359–371

    Article  CAS  Google Scholar 

  • Qi L, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res 15:3–19

    Article  CAS  Google Scholar 

  • Qi L, Pumphrey M, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:91–98

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) Introduction of yellow-rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Article  Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. In: Stadler Symposia, vol 4. University of Missouri, Columbia, pp 23–38

    Google Scholar 

  • Sears ER (1983) The transfer to wheat of interstitial segments of alien chromosomes. In: Sakamoto S. (ed.) Proc 6th Int Wheat Genet Symp, Kyoto, Japan, pp. 5–12

  • Sharp PJ, Chao S, Desai S, Gale MD (1989) The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet 78:342–348

    Article  Google Scholar 

  • Shepherd KW, Islam AKMR (1988) Fourth compendium of wheat-alien chromosome lines. In: Proc 7th Intern Wheat Genet Symp, Cambridge, England, pp. 1373–1398

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom 4:12–25

    Article  CAS  Google Scholar 

  • Stack RW, Elias EM, Mitchell Fetch J, Miller JD, Joppa LR (2002) Fusarium head blight reaction of Langdon durum-Triticum dicoccoides chromosome substitution lines. Crop Sci 42:637–642

    Article  Google Scholar 

  • Takumi S, Nasuda S, Liu YG, Tsunewaki K (1993) Wheat phylogeny determined by RFLP analysis of nuclear-DNA.1. Einkorn Wheat. Jap J Genet 68:73–79

    Article  Google Scholar 

  • Wang RRC, Larson SR, Jensen KB (2010) Analysis of Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes using EST-SSR markers. Genome 53:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Xu SS, Khan K, Klindworth DL, Faris JD, Nygard G (2004) Chromosomal location of genes for novel glutenin subnunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides). Theor Appl Genet 108:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Xu SS, Faris JD, Cai X, Klindworth DL (2005) Molecular cytogenetic characterization and seed storage protein analysis of 1A/1D translocation lines of durum wheat. Chromosom Res 13:550–568

    Article  Google Scholar 

  • Xu SS, Jin Y, Klindworth DL, Wang RRC, Cai X (2009) Evaluation and characterization of seedling resistance to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci 49:2167–2175

    Article  Google Scholar 

  • Xue XZ, Wang RRC (1999) Detection of Elymus rectisetus chromosome segments added to wheat by RAPD and genomic in situ hybridization. Acta Genetica Sinica 26:539–545

    CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Cai and Xu labs for their help in this research and Drs. Lili Qi and G. Francois Marais for their critical review of this manuscript. Also, we would like to thank Drs. Mark Sorrells and Shahryar Kianian for maintaining and generously providing the RFLP probes for this study. This research was supported by the US Wheat & Barley Scab Initiative and North Dakota Wheat Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwen Cai.

Additional information

Responsible Editor: Jiming Jiang

Rights and permissions

Reprints and permissions

About this article

Cite this article

McArthur, R.I., Zhu, X., Oliver, R.E. et al. Homoeology of Thinopyrum junceum and Elymus rectisetus chromosomes to wheat and disease resistance conferred by the Thinopyrum and Elymus chromosomes in wheat. Chromosome Res 20, 699–715 (2012). https://doi.org/10.1007/s10577-012-9307-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-012-9307-y

Keywords

Navigation