Skip to main content
Log in

Exploring giant plant genomes with next-generation sequencing technology

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Genome size in plants is characterised by its extraordinary range. Although it appears that the majority of plants have small genomes, in several lineages genome size has reached giant proportions. The recent advent of next-generation sequencing (NGS) methods has for the first time made detailed analysis of even the largest of plant genomes a possibility. In this review, we highlight investigations that have utilised NGS for the study of plants with large genomes, as well as describing ongoing work that aims to harness the power of these technologies to gain insights into their evolution. In addition, we emphasise some areas of research where the use of NGS has the potential to generate significant advances in our current understanding of how plant genomes evolve. Finally, we discuss some of the future developments in sequencing technology that may further improve our ability to explore the content and evolutionary dynamics of the very largest genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ChIP-seq:

Chromatin immunoprecipitation followed by sequencing

IR:

Illegitimate recombination

LINE:

Long interspersed nuclear element

LTR:

Long terminal repeat

Mb:

Mega base pairs of DNA

MITE:

Miniature inverted repeat transposable element

NGS:

Next-generation sequencing

SINE:

Short interspersed nuclear element

siRNA:

Small interfering RNA

SMRT sequencing:

Single molecule real-time sequencing

sRNA:

Small RNA

TE:

Transposable element

TGS:

Third-generation sequencing

TIR:

Terminal inverted repeat

UR:

Unequal homologous recombination

References

  • Ambrožová K, Mandáková T, Bureš P et al (2011) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot 107:255–268

    Article  PubMed  Google Scholar 

  • Argout X, Salse J, Aury J-M et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2005a) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, New York, pp 89–162

    Chapter  Google Scholar 

  • Bennett MD, Leitch IJ (2005b) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot 95:45–90

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec 2010). http://www.kew.org/cvalues/

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 334:309–345

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25% larger than the Arabidopsis Genome Initiative estimate of 125 Mb. Ann Bot 91:547–557

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Cantu D, Vanzetti LS, Sumner A et al (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11:408

    Article  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–959

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  PubMed  Google Scholar 

  • Du J, Tian Z, Hans CS et al (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  CAS  PubMed  Google Scholar 

  • Feschotte F, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  CAS  PubMed  Google Scholar 

  • Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K (2011) Crop genome sequencing: lessons and rationales. Trends Plant Sci 16:77–88

    Article  CAS  PubMed  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour. doi:10.1111/j.1755-0998.2011.03024.x

  • Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:91–98

    Article  CAS  PubMed  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777

    Article  CAS  PubMed  Google Scholar 

  • Grover CE, Wendel JE (2010) Recent insights into mechanisms of genome size change in plants. J Bot doi:10.1155/2010/382732

  • Hawkins JS, Kim HR, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  CAS  PubMed  Google Scholar 

  • Hawkins JS, Grover CE, Wendel JF (2008) Repeated big bangs and the expanding universe: directionality in plant genome size evolution. Plant Sci 174:557–562

    Article  CAS  Google Scholar 

  • Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci USA 106:17811–17816

    Article  CAS  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG (2005) Transposable elements. In: Gregory TR (ed) The evolution of the genome. Elsevier, New York, pp 165–221

    Chapter  Google Scholar 

  • Kovach A, Wegrzyn JL, Parra G et al (2010) The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420

    Article  PubMed  Google Scholar 

  • Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley, New York, pp 153–176

    Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217

    CAS  Google Scholar 

  • Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. J Evol Biol 20:2296–2308

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF (2010) Genome size dynamics and evolution in monocots. J Bot doi:10.1155/2010/862516

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Neumann P, Navrátilová A (2007) Repetitive DNA in pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8:427

    Article  PubMed  Google Scholar 

  • Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next-generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  Google Scholar 

  • Nakazato T, Barker MS, Rieseberg LH, Gastony GJ (2008) Evolution of the nuclear genome of ferns and lycophytes. In: Haufler C, Ranker T (eds) The biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, UK, pp 177–200

    Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378

    Article  PubMed  Google Scholar 

  • O’Brien IEW, Smith DR, Gardner RC, Murray BG (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115:91–99

    Article  Google Scholar 

  • Obermayer R, Leitch IJ, Hanson L, Bennett MD (2002) Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann Bot 90:209–217

    Article  CAS  PubMed  Google Scholar 

  • Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. Bioessays 31:703–714

    Article  CAS  PubMed  Google Scholar 

  • Park PJ (2009) CHiP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10:669–680

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Freeling M, Tang H, Wang X (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Piegu B, Guyot R, Picault N et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  CAS  PubMed  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–228

    Article  CAS  PubMed  Google Scholar 

  • Renny-Byfield S, Chester M, Kovařík A et al (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third generation sequencing. Hum Mol Genet 19:R227–R240

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC, Delcher AL, Salzberg SL (2010) Assembly of large genomes using second-generation sequencing. Genome Res 20:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DL, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  Google Scholar 

  • Slotkin RK, Martienssen RA (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Swaminanthan K, Alabady MS, Varala K et al (2010) Genomic and small RNA sequencing of Miscanthus × giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biol 11:R12

    Article  Google Scholar 

  • Tate JA, Soltis DE, Soltis PS (2005) Polyploidy in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, New York, pp 372–426

    Google Scholar 

  • Tatum TC, Stepanovic S, Biradar DP, Rayburn AL, Korban SS (2005) Variation in nuclear DNA content in Malus species and cultivated apples. Genome 48:924–930

    Article  CAS  PubMed  Google Scholar 

  • Temsch EM, Temsch W, Ehrendorfer-Schratt L, Greilhuber J (2010) Heavy metal pollution, selection, and genome size: the species of the Žerjav study revisited with flow cytometry. J Bot doi:10.1155/2010/596542

  • Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J (2011) Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol 3:219–229

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Tian Z, Rizzon C, Du J et al (2009) Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons. Genome Res 19:221–2230

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Vitte C, Bennetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103:17638–17643

    Article  CAS  PubMed  Google Scholar 

  • Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Taudien S, Houben A et al (2008) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722

    Article  Google Scholar 

  • Wicker T, Buchmann JP, Keller B (2010) Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res 20:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 31:715–726

    Article  CAS  PubMed  Google Scholar 

  • Zhang X (2008) The epigenetic landscape of plants. Science 320:489–492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank James Tosh and Andrew Leitch for helpful comments on an earlier version of this manuscript, and Andrew Leitch, Richard Nichols, Mike Fay, Simon Renny-Byfield, Jiří Macas, Petr Novák and Pavel Neumann for useful discussion on the analysis of NGS data from plants with very large genomes. We also thank two anonymous reviewers and the editors for helpful comments that allowed us to improve this manuscript. Research into the dynamics of genome evolution in Fritillaria is part of a Natural Environment Research Council (NERC)-funded project (‘Evolutionary Dynamics of Genome Obesity’; grant number NE/G01724/1) to the Royal Botanic Gardens, Kew (UK) and Queen Mary, University of London (UK), and is being conducted in collaboration with the Biology Centre ASCR, Institute of Plant Molecular Biology (Czech Republic); 454 sequencing for this project is supported by the NERC Biomolecular Analysis Facility at the University of Liverpool (UK); plant material for this research has been kindly provided from specimens grown by Laurence Hill, Jeremy Broome, Richard Kernick and Kit Strange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Kelly.

Additional information

Responsible Editor: H. Macgregor and C. Rieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, L.J., Leitch, I.J. Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res 19, 939–953 (2011). https://doi.org/10.1007/s10577-011-9246-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-011-9246-z

Keywords

Navigation