Skip to main content
Log in

FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Microsatellites are highly polymorphic markers that are distributed through all the genome being more abundant in non-coding regions. Whether they are neutral or under selection, these markers if localized can be used as co-dominant molecular markers to explore the dynamics of the evolutionary processes. Their cytological localization can allow identifying genes under selection, inferring recombination from a genomic point of view, or screening for the genomic reorganizations occurring during the evolution of a lineage, among others. In this paper, we report for the first time the localization of microsatellite loci by fluorescent in situ hybridization on Drosophila polytene chromosomes. In Drosophila subobscura, 72 dinucleotide microsatellite loci were localized by fluorescent in situ hybridization yielding unique hybridization signals. In the sex chromosome, microsatellite distribution was not uniform and its density was higher than in autosomes. We identified homologous segments to the sequence flanking the microsatellite loci by browsing the genome sequence of Drosophila pseudoobscura and Drosophila melanogaster. Their localization supports the conservation of Muller’s chromosomal elements among Drosophila species and the existence of multiple intrachromosomal rearrangements within each evolutionary lineage. Finally, the lack of microsatellite repeats in the homologous D. melanogaster sequences suggests convergent evolution for high microsatellite density in the distal part of the X chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DAPI:

4'-6-Diamidino-2-phenylindole

dsub:

ID names of the clones

FISH:

fluorescent in-situ hybridization

HP1:

Heterochromatin Protein 1

NTP:

nucleotides triphosphate

PCR:

polymerase chain reaction

rDNA:

ribosomal DNA

SSC:

Sodium Chloride-Sodium Citrate buffer

SSR:

simple sequence repeats

UCSC:

University of California Santa Cruz

References

  • Adams MA, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Aquadro CE, Begun DJ, Kindahl EC (1994) Selection, recombination, and DNA polymorphism in Drosophila. In: Golding B (ed) Non-neutral evolution: theories and molecular data. Chapman and Hall, New York, pp 46–55

    Google Scholar 

  • Ayala FJ, Serra L, Prevosti A (1989) A grand experiment in evolution: the subobscura colonization of the Americas. Genome 31:246–255

    Google Scholar 

  • Bachtrog D, Weiss S, Zangerl B, Brem G, Schlötterer C (1999) Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Mol Biol Evol 16:602–610

    CAS  PubMed  Google Scholar 

  • Balanyà J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313:1773–1775

    Article  PubMed  Google Scholar 

  • Bauer V, Aquadro CF (1997) Rates of DNA sequence evolution are not sex-biased in Drosophila melanogaster and D. simulans. Mol Biol Evol 14:1252–1257

    CAS  PubMed  Google Scholar 

  • Belyaeva ES, Andreyeva EN, Belyakin SN, Volkova EI, Zhimulev IF (2008) Intercalary heterochromatin in polytene chromosomes of Drosophila melanogaster. Chromosoma 117:411–418

    Article  CAS  PubMed  Google Scholar 

  • Bhutkar A, Schaeffer SW, Russo SM, Xu M, Smith TF, Gelbart WM (2008) Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179:1657–1680

    Article  PubMed  Google Scholar 

  • Carreras C, Pascual M, Cardona L et al (2006) The genetic structure of the loggerhead sea turtle (Caretta caretta) in the Mediterranean as revealed by nuclear and mitochondrial DNA and its conservation implications. Conserv Genet 8:761–775

    Article  Google Scholar 

  • Carreras-Carbonell J, Macpherson E, Pascual M (2004) Isolation and characterization of microsatellite loci in Tripterygion delaisi. Mol Ecol Notes 4:438–439

    Article  CAS  Google Scholar 

  • Carreras-Carbonell J, Macpherson E, Pascual M (2005) Rapid radiation and cryptic speciation in Mediterranean triplefin blennies (Pisces: Tripterygiidae) combining multiple genes. Mol Phylogenet Evol 37:751–761

    Article  CAS  PubMed  Google Scholar 

  • Carreras-Carbonell J, Macpherson E, Pascual M (2008) Utility of pairwise mtDNA genetic distances for predicting cross-species amplification and polymorphism success in fishes. Cons Genet 9:181–190

    Article  CAS  Google Scholar 

  • Chang SB, Yang T-J, Datema E et al (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res 16:919–933

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Jouve N (2007a) The nonrandom distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. Chromosome Res 15:711–720

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Jouve N (2007b) Similarities in the chromosomal distribution of AG and AC repeats within and between Drosophila, human and barley chromosomes. Cytogenet Genome Res 119:91–99

    Article  CAS  PubMed  Google Scholar 

  • Di Meo GP, Perucatti A, Floriot S et al (2008) An extended river buffalo (Bubalus bubalis, 2n = 50) cytogenetic map: assignment of 68 autosomal loci by FISH-mapping and R-banding and comparison with human chromosomes. Chromosome Res 16:827–837

    Article  PubMed  Google Scholar 

  • Dobzhansky T (1950) Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35:288–302

    CAS  PubMed  Google Scholar 

  • Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Article  Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  CAS  PubMed  Google Scholar 

  • González J, Ranz JM, Ruiz A (2002) Chromosomal elements evolve at different rates in Drosophila genome. Genetics 161:1137–1154

    PubMed  Google Scholar 

  • Gurbich TA, Bachtrog D (2008) Gene content evolution on the X chromosome. Curr Opin Genet Dev 18:493–498

    Article  CAS  PubMed  Google Scholar 

  • Kashi Y, Soller M (1999) Functional roles of microsatellites and minisatellites. In: Goldstein DB, Schlotterer C (eds) Microsatellites: evolution and application. Oxford University Press, Oxford, pp 10–23

    Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    CAS  PubMed  Google Scholar 

  • Kauer M, Zangerl B, Dieringer D, Schlötterer C (2002) Chromosomal patterns of microsatellite variability contrast sharply in African and Non-African populations of Drosophila melanogaster. Genetics 160:247–256

    CAS  PubMed  Google Scholar 

  • Krimbas CB (1993) Drosophila subobscura: biology, genetics and inversion polymorphism. Verlag Dr Kovac, Hamburg

    Google Scholar 

  • Krimbas CB, Loukas M (1980) The inversion polymorphism of Drosophila subobscura. Evol Biol 12:163–234

    Google Scholar 

  • Kunze-Mühl E, Müller E (1958) Weitere Untersuchungen über die chromosomale Struktur und die natürlichen Strukturtypen von Drosophila subobscura Coll. Chromosoma 9:559–570

    Article  PubMed  Google Scholar 

  • Lenartowski R, Goc A (2002) Tissue-specific association of the human tyrosine hydroxylase gene with the nuclear matrix. Neurosci Lett 330:151–154

    Article  CAS  PubMed  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Lim JK (1993) In situ hybridization with biotinylated DNA. Dros Inf Serv 72:73–77

    Google Scholar 

  • Lohe AR, Hilliker AJ, Roberts PA (1993) Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134:1149–1174

    CAS  PubMed  Google Scholar 

  • Lowenhaupt K, Rich A, Pardue ML (1989) Nonrandom distribution of long mono- and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination. Mol Cell Biol 9:1173–1182

    CAS  PubMed  Google Scholar 

  • Muller HJ (1940) Bearings of the ‘Drosophila’ work on systematics. In: Huxley J (ed) The new systematics. Clarendon, Oxford, pp 185–268

    Google Scholar 

  • Papaceit M, Aguadé M, Segarra C (2006) Chromosomal evolution of elements B and C in the Sophophora subgenus of Drosophila: evolutionary rate and polymorphism. Evolution 60:768–781

    CAS  PubMed  Google Scholar 

  • Pardue ML, Lowenhaupt K, Rich A, Nordheiml A (1987) (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6:1781–1789

    CAS  PubMed  Google Scholar 

  • Pascual M, Schug MD, Aquadro CF (2000) High density of long dinucleotide microsatellites in Drosophila subobscura. Mol Biol Evol 17:1259–1267

    CAS  PubMed  Google Scholar 

  • Pascual M, Aquadro CF, Soto V, Serra L (2001) Microsatellite variation in colonizing and palearctic populations of Drosophila subobscura. Mol Biol Evol 18:731–740

    CAS  PubMed  Google Scholar 

  • Pascual M, Chapuis MP, Mestres F et al (2007) Introduction history of D. subobscura in the New World: a microsatellite-based survey using ABC methods. Mol Ecol 16:3069–3083

    Article  CAS  PubMed  Google Scholar 

  • Pimpinelli S, Bonaccorsi S, Fanti L, Gatti M (2000) Preparation and analysis of Drosophila mitotic chromosomes. In: Sullivan W, Ashburner M, Hawley RS (eds) Drosophila protocols. Cold Spring Harbor Laboratory Press, New York, pp 3–23

    Google Scholar 

  • Prevosti A, Ribó G, Serra L et al (1988) Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal-inversion polymorphism. Proc Natl Acad Sci USA 85:5597–5600

    Article  PubMed  Google Scholar 

  • Primmer CR, Painter JN, Koskinen MT, Palo JU, Merilä J (2005) Factors affecting avian cross-species microsatellite amplification. J Avian Biol 36:348–360

    Article  Google Scholar 

  • Ramos-Onsins S, Segarra C, Rozas J, Aguadé M (1998) Molecular and chromosomal phylogeny in the obscura group of Drosophila inferred from sequences of the rp49 gene region. Mol Phylogenet Evol 9:33–41

    Article  CAS  PubMed  Google Scholar 

  • Reiland J, Hodge S, Noor MAF (2002) Strong founder effect in Drosophila pseudoobscura colonizing New Zealand from North America. J Hered 93:415–420

    Article  CAS  PubMed  Google Scholar 

  • Richards S, Liu Y, Bettencourt BR et al (2005) Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene and cis-element evolution. Genome Res 15:1–18

    Article  CAS  PubMed  Google Scholar 

  • Rico C, Rico I, Hewitt G (1996) 470 million years of conservation of microsatellite loci among fish species. Proc R Soc Lond 263:549–557

    Article  CAS  Google Scholar 

  • Riddle NC, Elgin SCR (2006) The dot chromosome of Drosophila: Insights into chromatin states and their change over evolutionary time. Chromosome Res 14:405–416

    Article  CAS  PubMed  Google Scholar 

  • Samollow PB, Gouin N, Miethke P et al (2007) A microsatellite-based, physically anchored linkage map for the gray, short-tailed Opossum (Monodelphis domestica). Chromosome Res 15:269–281

    CAS  PubMed  Google Scholar 

  • Schaeffer SW, Bhutkar A, McAllister BF et al (2008) Polytene chromosomal maps of 11 Drosophila species: the order of genomic scaffolds inferred from genetic and physical maps. Genetics 179:1601–1655

    Article  PubMed  Google Scholar 

  • Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20:211–215

    Article  PubMed  Google Scholar 

  • Segarra C, Aguadé M (1992) Molecular organization of the X chromosome in different species of the obscura group of Drosophila. Genetics 130:513–521

    CAS  PubMed  Google Scholar 

  • Segarra C, Ribó G, Aguadé M (1996) Differentiation of Muller’s chromosomal elements D and E in the obscura group of Drosophila. Genetics 144:139–146

    CAS  PubMed  Google Scholar 

  • Simões P, Pascual M, Santos J, Rose MR, Matos M (2008) Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura. BMC Evol Biol 8:66

    Article  PubMed  Google Scholar 

  • Singh ND, Larracuente AM, Clark AG (2008) Contrasting the efficacy of selection on the X and autosomes in Drosophila. Mol Biol Evol 25:454–467

    Article  CAS  PubMed  Google Scholar 

  • Slawson EE, Shaffer CD, Malone CD et al (2006) Comparison of dot chromosome sequences from D. melanogaster and D. virilis reveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biol 7:R15

    Article  PubMed  Google Scholar 

  • Thornton K, Bachtrog D, Andolfatto P (2006) X chromosomes and autosomes evolve at similar rates in Drosophila: no evidence for faster-X protein evolution. Genome Res 16:498–504

    Article  CAS  PubMed  Google Scholar 

  • Throckmorton LH (1975) The phylogeny, ecology and geography of Drosophila. In: King RC (ed) Handbook of genetics, vol 3. Plenum, New York, pp 421–469

    Google Scholar 

  • Vicoso B, Haddrill PR, Charlesworth R (2008) A multispecies approach for comparing sequence evolution of X-linked and autosomal sites in Drosophila. Genet Res 90:421–431

    Article  CAS  PubMed  Google Scholar 

  • Wilder JA, Diaz T, O’neill RJW, Kenney J, Hollocher H (2002) Characterization and isolation of novel microsatellites from the Drosophila dunni subgroup. Genet Res 80:177–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Francisco Carmona for help in the statistic analyses and Joan Balanyà for help with probes localization. We also thank Montse Papaceit, Lucía Alonso, Jesús Albornoz, and Ana Domínguez for help with preliminary microsatellite localization assays. Josiane Santos has the grant SFRH/BD/28498/2006 from FCT, Portugal. This work was supported by projects CGL2006-13423-C02-02 from the Ministerio de Ciencia y Tecnología (MCYT, Spain) and the EU (FEDER) and SGR2009-636 from the Generalitat de Catalunya (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Pascual.

Additional information

Responsible Editor: Pat Heslop-Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J., Serra, L., Solé, E. et al. FISH mapping of microsatellite loci from Drosophila subobscura and its comparison to related species. Chromosome Res 18, 213–226 (2010). https://doi.org/10.1007/s10577-010-9112-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-010-9112-4

Keywords

Navigation