Skip to main content
Log in

How cohesin and CTCF cooperate in regulating gene expression

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Cohesin is a DNA-binding protein complex that is essential for sister chromatid cohesion and facilitates the repair of damaged DNA. In addition, cohesin has important roles in regulating gene expression, but the molecular mechanisms of this function are poorly understood. Recent experiments have revealed that cohesin binds to the same sites in mammalian genomes as the zinc finger transcription factor CTCF. At a few loci CTCF has been shown to function as an enhancer-blocking transcriptional insulator, and recent observations indicate that this function depends on cohesin. Here we review what is known about the roles of cohesin and CTCF in regulating gene expression in mammalian cells, and we discuss how cohesin might mediate the insulator function of CTCF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ATP:

adenosin-5′-triphosphate

CdLS:

Cornelia de Lange Syndrome

ChIP:

chromatin immunoprecipitation

cHS4:

5′HS4 chicken β-globin insulator

CTCF:

zinc finger transcription factor

EcR-B1:

ecdysone receptor B1

ICR:

imprinting control region, also called differentially methylated region or domain (DMR/DMD)

KSHV:

Karposi sarcoma-associated herpes virus

LCR:

locus control region

ncRNA:

non-coding RNA

PEV:

position-effect-variegation

qPCR:

quantitative polymerase chain reaction

RBS/SC:

Roberts/SC Phocomelia Syndrome

RNAi:

RNA interference

TEV:

tobacco etch virus protease

References

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin, cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene. Nature 351:153–155

    Article  PubMed  CAS  Google Scholar 

  • Bartolomei MS, Webber AL, Brunkow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev 7:1663–1673

    Article  PubMed  CAS  Google Scholar 

  • Bausch C, Noone S, Henry JM et al (2007) Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27:8522–8532

    Article  PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485

    Article  PubMed  CAS  Google Scholar 

  • Benard CY, Kebir H, Takagi S, Hekimi S (2004) mau-2 acts cell-autonomously to guide axonal migrations in Caenorhabditis elegans. Development 131:5947–5958

    Article  PubMed  CAS  Google Scholar 

  • Bender MA, Bulger M, Close J, Groudine M (2000) Beta-globin gene switching, DNase I sensitivity of the endogenous beta-globin locus in mice do not require the locus control region. Mol Cell 5:387–393

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar TR, Heeger S, Lehane C et al (2008) Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321:563–566

    Article  PubMed  CAS  Google Scholar 

  • Chao W, Huynh KD, Spencer RJ, Davidow LS, Lee JT (2002) CTCF, a candidate trans-acting factor for X-inactivation choice. Science 295:345–347

    Article  PubMed  CAS  Google Scholar 

  • Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ (2005) Antisense transcription, heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20:483–489

    Article  PubMed  CAS  Google Scholar 

  • Chung JH, Bell AC, Felsenfeld G (1997) Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci U S A 94:575–580

    Article  PubMed  CAS  Google Scholar 

  • Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2, Scc4 proteins. Mol Cell 5:243–254

    Article  PubMed  CAS  Google Scholar 

  • de Laat W, Klous P, Kooren J et al (2008) Three-dimensional organization of gene expression in erythroid cells. Curr Top Dev Biol 82:117–139

    Article  PubMed  CAS  Google Scholar 

  • Deardorff MA, Kaur M, Yaeger D et al (2007) Mutations in cohesin complex members SMC3, SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80:485–494

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Adams CR, Rine J, Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13:698–708

    Article  PubMed  CAS  Google Scholar 

  • Dorsett D (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes. Chromosoma 116:1–13

    Article  PubMed  Google Scholar 

  • Dorsett D (2009) Cohesin, gene expression and development: lessons from Drosophila. Chomosom Res. doi:10.1007/s10577-009-9022-5

  • Dorsett D, Eissenberg JC, Misulovin Z, Martens A, Redding B, McKim K (2005) Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132:4743–4753

    Article  PubMed  CAS  Google Scholar 

  • Engel N, Raval AK, Thorvaldsen JL, Bartolomei MS (2008) Three-dimensional conformation at the H19/Igf2 locus supports a model of enhancer tracking. Hum Mol Genet

  • Epner E, Reik A, Cimbora D et al (1998) The beta-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse beta-globin locus. Mol Cell 2:447–455

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith AC, Sasaki H, Cattanach BM, Surani MA (1993) Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 362:751–755

    Article  PubMed  CAS  Google Scholar 

  • Filippova GN (2008) Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80:337–360

    Article  PubMed  CAS  Google Scholar 

  • Filippova GN, Fagerlie S, Klenova EM et al (1996) An exceptionally conserved transcriptional repressor CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16:2802–2813

    PubMed  CAS  Google Scholar 

  • Gandhi R, Gillespie PJ, Hirano T (2006) Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol 16:2406–2417

    Article  PubMed  CAS  Google Scholar 

  • Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713

    Article  PubMed  CAS  Google Scholar 

  • German J (1979) Roberts’ syndrome. I. Cytological evidence for a disturbance in chromatid pairing. Clin Genet 16:441–447

    Article  PubMed  CAS  Google Scholar 

  • Glynn EF, Megee PC, Yu HG et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  CAS  Google Scholar 

  • Gordillo M, Vega H, Trainer AH et al (2008) The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity. Hum Mol Genet 17:2172–2180

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld JM, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202

    Article  PubMed  CAS  Google Scholar 

  • Gregan J, Spirek M, Rumpf C (2008) Solving the shugoshin puzzle. Trends Genet 24:205–207

    Article  PubMed  CAS  Google Scholar 

  • Gullerova M, Proudfoot NJ (2008) Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell 132:983–995

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Lowe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature

  • Hakimi MA, Bochar DA, Schmiesing JA et al (2002) A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998

    Article  PubMed  CAS  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    Article  PubMed  CAS  Google Scholar 

  • Hikichi T, Kohda T, Kaneko-Ishino T, Ishino F (2003) Imprinting regulation of the murine Meg1/Grb10, human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Res 31:1398–1406

    Article  PubMed  CAS  Google Scholar 

  • Holohan EE, Kwong C, Adryan B et al (2007) CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet 3:e112

    Article  PubMed  CAS  Google Scholar 

  • Horsfield JA, Anagnostou SH, Hu JK et al (2007) Cohesin-dependent regulation of Runx genes. Development 134:2639–2649

    Article  PubMed  CAS  Google Scholar 

  • Hou F, Zou H (2005) Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell 16:3908–3918

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Oshimura M, Nakao M (2006) CTCF-dependent chromatin insulator is linked to epigenetic remodeling. Mol Cell 23:733–742

    Article  PubMed  CAS  Google Scholar 

  • Kanduri C, Pant V, Loukinov D et al (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 10:853–856

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Abdullaev ZK, Smith AD et al (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245

    Article  PubMed  CAS  Google Scholar 

  • Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM (2008) The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 117:199–210

    Article  PubMed  CAS  Google Scholar 

  • Krantz ID, McCallum J, DeScipio C et al (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36:631–635

    Article  PubMed  CAS  Google Scholar 

  • Kueng S, Hegemann B, Peters BH et al (2006) Wapl controls the dynamic association of cohesin with chromatin. Cell 127:955–967

    Article  PubMed  CAS  Google Scholar 

  • Kurukuti S, Tiwari VK, Tavoosidana G et al (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103:10684–10689

    Article  PubMed  CAS  Google Scholar 

  • Lengronne A, Katou Y, Mori S et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578

    Article  PubMed  CAS  Google Scholar 

  • Lobanenkov VV, Nicolas RH, Adler VV et al (1990) A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene. Oncogene 5:1743–1753

    PubMed  CAS  Google Scholar 

  • Losada A, Hirano M, Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12:1986–1997

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Yokochi T, Hirano T (2005) Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J Cell Sci 118:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Loukinov DI, Pugacheva E, Vatolin S et al (2002) BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci U S A 99:6806–6811

    Article  PubMed  CAS  Google Scholar 

  • Misulovin Z, Schwartz YB, Li XY et al (2008) Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 117:89–102

    Article  PubMed  CAS  Google Scholar 

  • Moon H, Filippova G, Loukinov D et al (2005) CTCF is conserved from Drosophila to humans, confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6:165–170

    Article  PubMed  CAS  Google Scholar 

  • Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2, H19 into parent-specific chromatin loops. Nat Genet 36:889–893

    Article  PubMed  CAS  Google Scholar 

  • Musio A, Selicorni A, Focarelli ML et al (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38:528–530

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics, disease. Trends Genet 17:520–527

    Article  PubMed  CAS  Google Scholar 

  • Pant V, Kurukuti S, Pugacheva E et al (2004) Mutation of a single CTCF target site within the H19 imprinting control region leads to loss of Igf2 imprinting, complex patterns of de novo methylation upon maternal inheritance. Mol Cell Biol 24:3497–3504

    Article  PubMed  CAS  Google Scholar 

  • Parelho V, Hadjur S, Spivakov M et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433

    Article  PubMed  CAS  Google Scholar 

  • Pauli A, Althoff F, Oliveira RA et al (2008) Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 14:239–251

    Article  PubMed  CAS  Google Scholar 

  • Peters JM, Schmitz J, Tedeschi A (2008) The cohesin complex and its roles in chromosome biology. Genes Dev 22:3089–114

    Article  PubMed  CAS  Google Scholar 

  • Rankin S, Ayad NG, Kirschner MW (2005) Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell 18:185–200

    Article  PubMed  CAS  Google Scholar 

  • Recillas-Targa F, Bell AC, Felsenfeld G (1999) Positional enhancer-blocking activity of the chicken beta-globin insulator in transiently transfected cells. Proc Natl Acad Sci U S A 96:14354–14359

    Article  PubMed  CAS  Google Scholar 

  • Rollins RA, Morcillo P, Dorsett D (1999) Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593

    PubMed  CAS  Google Scholar 

  • Rollins RA, Korom M, Aulner N, Martens A, Dorsett D (2004) Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol Cell Biol 24:3100–3111

    Article  PubMed  CAS  Google Scholar 

  • Rubio ED, Reiss DJ, Welcsh PL et al (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 105:8309–8314

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Bell AC, Recillas-Targa F et al (2000) Structural and functional conservation at the boundaries of the chicken beta-globin domain. EMBO J 19:2315–2322

    Article  PubMed  CAS  Google Scholar 

  • Schmitz J, Watrin E, Lenart P, Mechtler K, Peters JM (2007) Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol 17:630–636

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner O, Berdnik D, Levy JM et al (2008) piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 14:227–238

    Article  PubMed  CAS  Google Scholar 

  • Schule B, Oviedo A, Johnston K, Pai S, Francke U (2005) Inactivating mutations in ESCO2 cause SC phocomelia, Roberts syndrome: no phenotype–genotype correlation. Am J Hum Genet 77:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Skibbens RV, Maradeo M, Eastman L (2007) Fork it over: the cohesion establishment factor Ctf7p, DNA replication. J Cell Sci 120:2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Splinter E, Heath H, Kooren J et al (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20:2349–2354

    Article  PubMed  CAS  Google Scholar 

  • Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM (2008) Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 27:654–666

    Article  PubMed  CAS  Google Scholar 

  • Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM (2000) Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 151:749–762

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Benard C, Pak J, Livingstone D, Hekimi S (1997) Cellular, axonal migrations are misguided along both body axes in the maternal-effect mau-2 mutants of Caenorhabditis elegans. Development 124:5115–5126

    PubMed  CAS  Google Scholar 

  • Tomkins D, Hunter A, Roberts M (1979) Cytogenetic findings in Roberts-SC phocomelia syndrome(s). Am J Med Genet 4:17–26

    Article  PubMed  CAS  Google Scholar 

  • Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004a) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins, fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641

    Article  PubMed  CAS  Google Scholar 

  • Tonkin ET, Smith M, Eichhorn P et al (2004b) A giant novel gene undergoing extensive alternative splicing is severed by a Cornelia de Lange-associated translocation breakpoint at 3q263. Hum Genet 115:139–148

    Article  PubMed  CAS  Google Scholar 

  • Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999) Yeast cohesin complex requires a conserved protein Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320–333

    Article  PubMed  CAS  Google Scholar 

  • Tremblay KD, Saam JR, Ingram RS, Tilghman SM, Bartolomei MS (1995) A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 9:407–413

    Article  PubMed  CAS  Google Scholar 

  • Tremblay KD, Duran KL, Bartolomei MS (1997) A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol 17:4322–4329

    PubMed  CAS  Google Scholar 

  • Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–386

    Article  PubMed  CAS  Google Scholar 

  • Unal E, Heidinger-Pauli JM, Kim W et al (2008) A molecular determinant for the establishment of sister chromatid cohesion. Science 321:566–569

    Article  PubMed  CAS  Google Scholar 

  • Vega H, Waisfisz Q, Gordillo M et al (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470

    Article  PubMed  CAS  Google Scholar 

  • Verni F, Gandhi R, Goldberg ML, Gatti M (2000) Genetic, molecular analysis of wings apart-like (wapl), a gene controlling heterochromatin organization in Drosophila melanogaster. Genetics 154:1693–1710

    PubMed  CAS  Google Scholar 

  • Waizenegger IC, Hauf S, Meinke A, Peters JM (2000) Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410

    Article  PubMed  CAS  Google Scholar 

  • Wallace JA, Felsenfeld G (2007) We gather together: insulators, genome organization. Curr Opin Genet Dev 17:400–407

    Article  PubMed  CAS  Google Scholar 

  • Wan LB, Pan H, Hannenhalli S et al (2008) Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135:2729–2738

    Article  PubMed  CAS  Google Scholar 

  • Wendt KS, Yoshida K, Itoh T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Mikkelsen TS, Gnirke A, Lindblad-Toh K, Kellis M, Lander ES (2007) Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc Natl Acad Sci U S A 104:7145–7150

    Article  PubMed  CAS  Google Scholar 

  • Yahata K, Maeshima K, Sone T et al (2007) cHS4 insulator-mediated alleviation of promoter interference during cell based expression of tandemly associated transgenes. JMB: in press

  • Yoon B, Herman H, Hu B et al (2005) Rasgrf1 imprinting is regulated by a CTCF-dependent methylation-sensitive enhancer blocker. Mol Cell Biol 25:11184–11190

    Article  PubMed  CAS  Google Scholar 

  • Yoon YS, Jeong S, Rong Q, Park KY, Chung JH, Pfeifer K (2007) Analysis of the H19ICR insulator. Mol Cell Biol 27:3499–3510

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Jain S, Song H et al (2007) Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development 134:3191–3201

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shi X, Li Y et al (2008) Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell 31:143–151

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Dean A (2004) An insulator blocks spreading of histone acetylation, interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res 32:4903–4919

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Michael Peters.

Additional information

Responsible Editor: Christian Haering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendt, K.S., Peters, JM. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res 17, 201–214 (2009). https://doi.org/10.1007/s10577-008-9017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-9017-7

Keywords

Navigation