Skip to main content
Log in

Molecular mechanisms of chromosomal rearrangement during primate evolution

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Breakpoint analysis of the large chromosomal rearrangements which have occurred during primate evolution promises to yield new insights into the underlying mechanisms of mutagenesis. Comparison of these evolutionary breakpoints with those that are disease-associated in humans, and which occur during either meiotic or mitotic cell division, should help to identify basic mechanistic similarities as well as differences. It has recently become clear that segmental duplications (SDs) have had a very significant impact on genome plasticity during primate evolution. In comparisons of the human and chimpanzee genomes, SDs have been found in flanking regions of 70–80% of inversions and ∼40% of deletions/duplications. A strong spatial association between primate-specific breakpoints and SDs has also become evident from comparisons of human with other mammalian genomes. The lineage-specific hyperexpansion of certain SDs observed in the genomes of human, chimpanzee, gorilla and gibbon is indicative of the intrinsic instability of some SDs in primates. However, since many primate-specific breakpoints map to regions lacking SDs, but containing interspersed high-copy repetitive sequence elements such as SINEs, LINEs, LTRs, α-satellites and (AT) n repeats, we may infer that a range of different molecular mechanisms have probably been involved in promoting chromosomal breakage during the evolution of primate genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antonell A, de Luis O, Domingo-Roura X, Perez-Jurado LA (2005) Evolutionary mechanisms shaping the genomic structure of the Williams–Beuren syndrome chromosomal region at human 7q11.23. Genome Res 15: 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  • Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X (2003) Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. Hum Mol Genet 12: 2201–2208.

    Article  PubMed  CAS  Google Scholar 

  • Ayala FJ, Coluzzi M (2005) Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA 102: 6535–6542.

    Article  PubMed  CAS  Google Scholar 

  • Babcock M, Yatsenko S, Hopkins J et al. (2007) Hominoid lineage specific amplification of low-copy repeats on 22q11.2 (LCR22s) associated with velo-cardio-facial/DiGeorge syndrome. Hum Mol Genet 16: 2560–2571.

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Eichler EE (2006) Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7: 552–564.

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Gu Z, Clark RA et al. (2002) Recent segmental duplications in the human genome. Science 297: 1003–1007.

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Liu G, Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73: 823–834.

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE (2004) Hotspots of mammalian chromosomal evolution. Genome Biol 5: R23.

    Article  PubMed  Google Scholar 

  • Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA (2005) Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 26: 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Vessere GM, ten Hallers BF et al. (2006) A high-resolution map of synteny disruptions in gibbon and human genomes. PLoS Genet 2: e223.

    Article  PubMed  Google Scholar 

  • Cheng Z, Ventura M, She X et al. (2005) A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437: 88–93.

    Article  PubMed  CAS  Google Scholar 

  • Chen FC, Chen CJ, Li WH, Chuang TJ (2007) Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Res 17: 16–22.

    Article  PubMed  CAS  Google Scholar 

  • Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW (2006) The evolution of mammalian gene families. PLoS ONE 1: e85.

    Article  PubMed  Google Scholar 

  • Dennehey BK, Gutches DG, McConkey EH, Krauter KS (2004) Inversion, duplication, and changes in gene context are associated with human chromosome 18 evolution. Genomics 83: 493–501.

    Article  PubMed  CAS  Google Scholar 

  • Dreszer TR, Wall GD, Haussler D, Pollard KS (2007) Biased clustered substitutions in the human genome: The footprints of male-driven biased gene conversion. Genome Res 17: 1420–1430.

    Article  PubMed  CAS  Google Scholar 

  • Dumas L, Kim YH, Karimpour-Fard A et al. (2007) Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res 31: 1266–1277.

    Article  Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48: 251–314.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Rethore MO, Aurias A, Goustard M (1975) Karyotype analysis of 2 species of gibbons (Hylobates lar and H. concolor) with different banding species. Cytogenet Cell Genet 15: 81–91.

    PubMed  CAS  Google Scholar 

  • Edelmann L, Pandita RK, Spiteri E et al. (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 8: 1157–1167.

    Article  PubMed  CAS  Google Scholar 

  • Eder V, Ventura M, Ianigro M, Teti M, Rocchi M, Archidiacono N (2003) Chromosome 6 phylogeny in primates and centromere repositioning. Mol Biol Evol 20: 1506–1512.

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Linardopoulou E, Friedman C, Williams E, Trask BJ (2002) Genomic structure and evolution of the ancestral chromosome fusion site in 2q13–2q14.1 and paralogous regions on other human chromosomes. Genome Res 12: 1651–1662.

    Article  PubMed  CAS  Google Scholar 

  • Feuk L, MacDonald JR, Tang T et al. (2005) Discovery of human inversion polymorphisms by comparative analysis of human and chimpanzee DNA sequence assemblies. PLoS Genet 1: e56.

    Article  PubMed  Google Scholar 

  • Fortna A, Kim Y, MacLaren E et al. (2004) Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol 2: e207.

    Article  PubMed  Google Scholar 

  • Frazer KA, Chen X, Hinds DA, Pant PV, Patil N, Cox DR (2003) Genomic DNA insertions and deletions occur frequently between humans and nonhuman primates. Genome Res 13: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Froenicke L (2005) Origins of primate chromosomes—as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences. Cytogenet Genome Res 108: 122–138.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RA, Rogers J, Katze MG et al. (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316: 222–234.

    Article  PubMed  CAS  Google Scholar 

  • Goidts V, Szamalek JM, Hameister H, Kehrer-Sawatzki H (2004) Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates. Hum Genet 115: 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Goidts V, Szamalek JM, de Jong PJ et al. (2005) Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. Genome Res 15: 1232–1242.

    Article  PubMed  CAS  Google Scholar 

  • Goidts V, Cooper DN, Armengol L et al. (2006) Complex pattern of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. Hum Genet 120: 270–284.

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, Rogers J, Milosavljevic A (2007) Human-specific changes of genome structure detected by genomic triangulation. Science 316: 235–237.

    Article  PubMed  CAS  Google Scholar 

  • IJdo JW, Baldini A, Ward DC, Reeders ST, Wells RA (1991) Origin of human chromosome 2: an ancestral telomere-telomere fusion. Proc Natl Acad Sci USA 88: 9051–9055.

    Article  PubMed  CAS  Google Scholar 

  • Jauch A, Wienberg J, Stanyon R et al. (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89: 8611–8615.

    Article  PubMed  CAS  Google Scholar 

  • Johnson ME; National Institute of Health Intramural Sequencing Center Comparative Sequencing Program, Cheng Z, Morrison VA, Scherer S, Ventura M, Gibbs RA, Green ED, Eichler EE (2006) Recurrent duplication-driven transposition of DNA during hominoid evolution. Proc Natl Acad Sci USA 103: 17626–17631.

    Article  PubMed  CAS  Google Scholar 

  • Kasai F, Takahashi E, Koyama K et al. (2000) Comparative FISH mapping of the ancestral fusion point of human chromosome 2. Chromosome Res 8: 727–735.

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Cooper DN (2007) Structural divergence between the human and chimpanzee genomes. Hum Genet 120: 759–778.

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Schreiner B, Tänzer S, Platzer M, Müller S, Hameister H (2002) Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Am J Hum Genet 71: 375–388.

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Sandig C, Chuzhanova N et al. (2005a) Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (Pan troglodytes). Hum Mutat 25: 45–55.

    Article  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Szamalek JM, Tanzer S, Platzer M, Hameister H (2005b) Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Genomics 85: 542–550.

    Article  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Sandig CA, Goidts V, Hameister H (2005c) Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenet Genome Res 108: 91–97.

    Article  CAS  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173: 419–434.

    Article  PubMed  CAS  Google Scholar 

  • Koehler U, Bigoni F, Wienberg J, Stanyon R (1995) Genomic reorganization in the concolor gibbon (Hylobates concolor) revealed by chromosome painting. Genomics 30: 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Larkin DM, Everts-van der Wind A, Rebeiz M et al. (2003) A cattle-human comparative map built with cattle BAC-ends and human genome sequence. Genome Res 13: 1966–1972.

    PubMed  Google Scholar 

  • Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Locke DP, Archidiacono N, Misceo D et al. (2003a) Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol 4: R50.

    Article  Google Scholar 

  • Locke DP, Segraves R, Carbone L et al. (2003b) Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization. Genome Res 13: 347–357.

    Article  CAS  Google Scholar 

  • Lu J, Li WH, Wu CI (2003) Comment on “Chromosomal speciation and molecular divergence-accelerated evolution in rearranged chromosomes”. Science 302: 988.

    Article  PubMed  CAS  Google Scholar 

  • Marques-Bonet T, Sànchez-Ruiz J, Armengol L et al. (2007) On the association between chromosomal rearrangements and genic evolution in humans and chimpanzees. Genome Biol 8: R230.

    Article  PubMed  Google Scholar 

  • Mikkelsen TS, Hillier LW, Eichler EE et al. (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87.

    Article  CAS  Google Scholar 

  • Müller S, Wienberg J (2001) “Bar-coding” primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109: 85–94.

    Article  PubMed  Google Scholar 

  • Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113: 493–501.

    Article  PubMed  Google Scholar 

  • Müller S, Finelli P, Neusser M, Wienberg J (2004) The evolutionary history of human chromosome 7. Genomics 84: 458–467.

    Article  PubMed  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A et al. (2005a) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309: 613–617.

    Article  CAS  Google Scholar 

  • Murphy WJ, Agarwala R, Schaffer AA et al. (2005b) A rhesus macaque radiation hybrid map and comparative analysis with the human genome. Genomics 86: 383–395.

    Article  CAS  Google Scholar 

  • Navarro A, Barton H (2003a) Chromosomal speciation and molecular divergence–accelerated evolution in rearranged chromosomes. Science 300: 321–324.

    Article  CAS  Google Scholar 

  • Navarro A, Barton NH (2003b) Accumulating postzygotic isolation genes in parapatry: a new twist on chromosomal speciation. Evolution Int J Org Evolution 57: 447–459.

    Google Scholar 

  • Newman TL, Tuzun E, Morrison VA et al. (2005) A genome-wide survey of structural variation between human and chimpanzee. Genome Res 15: 1344–1356.

    Article  PubMed  CAS  Google Scholar 

  • Nie W, Rens W, Wang J, Yang F (2001) Conserved chromosome segments in Hylobates hoolock revealed by human and H. leucogenys paint probes. Cytogenet Cell Genet 92: 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Noor MA, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci USA 98: 12084–12088.

    Article  PubMed  CAS  Google Scholar 

  • Ortíz-Barrientos D, Reiland J, Hey J, Noor MA (2002) Recombination and the divergence of hybridizing species. Genetica 116: 167–178.

    Article  PubMed  Google Scholar 

  • Perry GH, Tchinda J, McGrath SD et al. (2006) Hotspots for copy number variation in chimpanzees and humans. Proc Natl Acad Sci USA 103: 8006–8011.

    Article  PubMed  CAS  Google Scholar 

  • Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci USA 100: 7672–7677.

    Article  PubMed  CAS  Google Scholar 

  • Ranz JM, Maurin D, Chan YS et al. (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5: e152.

    Article  PubMed  Google Scholar 

  • Redon R, Ishikawa S, Fitch KR et al. (2006) Global variation in copy number in the human genome. Nature 444: 444–454.

    Article  PubMed  CAS  Google Scholar 

  • Roberto R, Capozzi O, Wilson RK et al. (2007) Molecular refinement of gibbon genome rearrangements. Genome Res 17: 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Ruiz-Herrera A, Froenicke L (2006) Dissecting the mammalian genome–new insights into chromosomal evolution. Trends Genet 22: 297–301.

    Article  PubMed  CAS  Google Scholar 

  • Royle NJ, Baird DM, Jeffreys AJ (1994) A subterminal satellite located adjacent to telomeres in chimpanzees is absent from the human genome. Nat Genet 6: 52–56.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Ponsa M, Garcia F, Egozcue J, Garcia M (2002) Fragile sites in human and Macaca fascicularis chromosomes are breakpoints in chromosome evolution. Chromosome Res 10: 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Garcia F, Mora L, Egozcue J, Ponsa M, Garcia M (2005) Evolutionary conserved chromosomal segments in the human karyotype are bounded by unstable chromosome bands. Cytogenet Genome Res 108: 161–174.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Castresana J, Robinson TJ (2006) Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol 7: R115.

    Article  PubMed  Google Scholar 

  • Sharp AJ, Locke DP, McGrath SD et al. (2005) Segmental duplications and copy number variation in the human genome. Am J Hum Genet 77: 78–88.

    Article  PubMed  CAS  Google Scholar 

  • She X, Horvath JE, Jiang Z et al. (2004) The structure and evolution of centromeric transition regions within the human genome. Nature 430: 857–864.

    Article  PubMed  CAS  Google Scholar 

  • She X, Liu G, Ventura M et al. (2006) A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. Genome Res 16: 576–583.

    Article  PubMed  CAS  Google Scholar 

  • Shimada MK, Kim CG, Kitano T, Ferrell RE, Kohara Y, Saitou N (2005) Nucleotide sequence comparison of a chromosome rearrangement on human chromosome 12 and the corresponding ape chromosomes. Cytogenet Genome Res 108: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz P, Park SS, Inoue K, Lupski JR (2001) The evolutionary chromosome translocation 4;19 in Gorilla gorilla is associated with microduplication of the chromosome fragment syntenic to sequences surrounding the human proximal CMT1A-REP. Genome Res 11: 1205–1210.

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz P, Shaw CJ, Withers M, Inoue K, Lupski JR (2004) Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 14: 2209–2220.

    Article  PubMed  CAS  Google Scholar 

  • Szamalek JM, Goidts V, Chuzhanova N, Hameister H, Cooper DN, Kehrer-Sawatzki H (2005) Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. Hum Genet 117: 168–176.

    Article  PubMed  CAS  Google Scholar 

  • Szamalek JM, Cooper DN, Goidts V, Hameister H, Kehrer-Sawatzki H (2006a) Characterization of the human-specific pericentric inversion that discriminates human chromosome 1 from the homologous chromosomes in great apes. Hum Genet 120: 126–138.

    Article  Google Scholar 

  • Szamalek JM, Goidts V, Searle JB, Cooper DN, Hameister H, Kehrer-Sawatzki H (2006b) The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus. Genomics 87: 39–45.

    Article  CAS  Google Scholar 

  • Szamalek JM, Cooper DN, Schempp W et al. (2006c) Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees. Hum Genet 119: 103–112.

    Article  CAS  Google Scholar 

  • Szamalek JM, Cooper DN, Hoegel J, Hameister H, Kehrer-Sawatzki H (2007) Chromosomal speciation of humans and chimpanzees revisited: studies of DNA divergence within inverted regions. Cytogenet Genome Res 116: 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Tsend-Ayush E, Grutzner F, Yue Y et al. (2004) Plasticity of human chromosome 3 during primate evolution. Genomics 83: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Vallender EJ, Lahn BT (2004) Effects of chromosomal rearrangements on human-chimpanzee molecular evolution. Genomics 84: 757–761.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Mudge JM, Palumbo V et al. (2003) Neocentromeres in 15q24–26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13: 2059–2068.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Weigl S, Carbone L et al. (2004) Recurrent sites for new centromere seeding. Genome Res 14: 1696–1703.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Antonacci F, Cardone MF et al. (2007) Evolutionary formation of new centromeres in macaque. Science 316: 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Weise A, Starke H, Mrasek K, Claussen U, Liehr T (2005) New insights into the evolution of chromosome 1. Cytogenet Genome Res 108: 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Weise A, Gross M, Schmidt S, Reichelt F, Claussen U, Liehr T (2007) New aspects of chromosomal evolution in the gorilla and the orangutan. Int J Mol Med 19: 437–443.

    PubMed  CAS  Google Scholar 

  • Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Wells RD, Dere R, Hebert ML, Napierala M, Son LS (2005) Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 33: 3785–3798.

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J (2005) Fluorescence in situ hybridization to chromosomes as a tool to understand human and primate genome evolution. Cytogenet Genome Res 108: 139–160.

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Jauch A, Ludecke HJ et al. (1994) The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary. Chrom Res 2: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Wilson GM, Flibotte S, Missirlis PI et al. (2006) Identification by full-coverage array CGH of human DNA copy number increases relative to chimpanzee and gorilla. Genome Res 16: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Grossmann B, Ferguson-Smith M, Yang F, Haaf T (2005) Comparative cytogenetics of human chromosome 3q21.3 reveals a hot spot for ectopic recombination in hominoid evolution. Genomics 85: 36–47.

    Article  PubMed  CAS  Google Scholar 

  • Yue Y, Tsend-Ayush E, Grutzner F, Grossmann B, Haaf T (2006) Segmental duplication associated with evolutionary instability of human chromosome 3p25.1. Cytogenet Genome Res 112: 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215: 1525–1530.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang X, Podlaha O (2004) Testing the chromosomal speciation hypothesis for humans and chimpanzees. Genome Res 14: 845–851.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lu HH, Chung WY, Yang J, Li WH (2005) Patterns of segmental. duplication in the human genome. Mol Biol Evol 22: 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Shetty J, Hou L et al. (2004) Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. Genome Res 14: 1851–1860.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegard Kehrer-Sawatzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehrer-Sawatzki, H., Cooper, D.N. Molecular mechanisms of chromosomal rearrangement during primate evolution. Chromosome Res 16, 41–56 (2008). https://doi.org/10.1007/s10577-007-1207-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1207-1

Key words

Navigation