Skip to main content
Log in

Accumulation of rare sex chromosome rearrangements in the African pygmy mouse, Mus (Nannomys) minutoides: a whole-arm reciprocal translocation (WART) involving an X-autosome fusion

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Although sex chromosomes are generally the most conserved elements of the mammalian karyotype, those of African pygmy mice show three extraordinary deviations from the norm: (a) asynaptic sex chromosomes, (b) multiple sex–autosome fusions, and (c) modifications of sex determination in some populations/species. In this study we identified, in two sex-reversed females of Mus (Nannomys) minutoides, a fourth rare sex chromosome change: a spontaneous whole-arm reciprocal translocation (WART) between an autosomal Robertsonian pair Rb(13.16) and the sex–autosome fusion Rb(X.1). This represents one of the very few reported cases of WARTs in natura within mammals, and is the first one to involve sex chromosomes. Hence, this finding offers new insights into the mechanisms of chromosomal differentiation in African pygmy mice, as WARTs may have contributed to the extensive diversity not only of autosomal Robertsonian fusions, but also of sex–autosome translocations. More widely, these results provide additional support to previous studies on the house mouse and the common shrew which indirectly inferred the role of WARTs in their karyotypic evolution, and may even help to understand how the fascinating 10 sex chromosome chain of the platypus might have evolved. This accumulation of rare sex chromosome changes in single specimens is, to our knowledge, exceptional among mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson AC, Alstrom-Rapaport C, Fredga K (2005) Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden. Implications for interpreting chromosomal evolution and colonization history. Mol Ecol 14: 2703-716.

    Article  CAS  PubMed  Google Scholar 

  • Ashley T (2002) X-autosome translocations, meiotic synapsis, chromosome evolution and speciation. Cytogenet Genome Res 96: 33-9.

    Article  CAS  PubMed  Google Scholar 

  • Ashley T (2005) Chromosome chains and platypus sex: kinky connections. BioEssays 27: 681-84.

    Article  PubMed  Google Scholar 

  • Britton-Davidian J, Catalan J, Ramalhinho MG et al. (2005) Chromosomal phylogeny of Robertsonian races of the house mouse on the island of Madeira: testing between alternative mutational processes. Genet Res 86: 171-83.

    Article  CAS  PubMed  Google Scholar 

  • Capanna E, Redi CA (1995) Whole-arm reciprocal translocation (WART) between Robertsonian chromosomes: finding of a Robertsonian heterozygous mouse with karyotype derived through WARTs. Chromosome Res 3: 135-37.

    Article  CAS  PubMed  Google Scholar 

  • Castiglia R, Capanna E (1999) Whole-arm reciprocal translocation (WART) in a feral population of mice. Chromosome Res 7: 493-95.

    Article  CAS  PubMed  Google Scholar 

  • Castiglia R, Garagna S, Merico V, Oguge N, Corti M (2006) Cytogenetics of a new cytotype of Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G-banding and distribution of (TTAGGG)n telomeric sequences. Chromosome Res 14: 587-94.

    Article  CAS  PubMed  Google Scholar 

  • Castiglia R, Gormung E, Corti M (2002) Cytogenetic analyses of chromosomal rearrangements in Mus minutoïdes/musculoïdes from North-West Zambia through mapping of the telomeric sequence (TTAGGG)n and banding techniques. Chromosome Res 10: 399-06.

    Article  CAS  PubMed  Google Scholar 

  • Catalan J, Auffray JC, Pellestor F, Britton-Davidian J (2000) Spontaneous occurrence of a Robertsonian fusion involving chromosome 19 by single whole-arm reciprocal translocation (WART) in wild-derived house mice. Chromosome Res 8: 593-01.

    Article  CAS  PubMed  Google Scholar 

  • Crocker M, Cattanach BM (1981) X-ray induction of translocations in mice carrying metacentrics (Robertsonian fusions); detection of whole arm chromosome exchanges. Mutation Res 91: 353-57.

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira EHC, Neusser M, Figueiredo WB et al. (2002) The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolor cross-species chromosome painting. Chromosome Res 10: 669-83.

    Article  PubMed  Google Scholar 

  • Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V (2004) Viability of X-autosome translocations in mammals: an epigenomic hypothesis from a rodent case-study. Chromosoma 113: 34-1.

    Article  CAS  PubMed  Google Scholar 

  • Forejt J (1979) Meiotic studies of translocations causing male sterility in the mouse. II. Double heterozygotes for Robertsonian translocations. Cytogenet Cell Genet 23: 163-70.

    Article  CAS  PubMed  Google Scholar 

  • Fredga K (1996) The chromosome races of Sorex araneus in Scandinavia. Hereditas 125: 123-35.

    Article  Google Scholar 

  • Fredga K (2003) Chromosome races of Sorex araneus in Norway. Description of two new races. Mammalia 68: 179-85.

    Article  Google Scholar 

  • Garagna S, Broccoli D, Redi CA, Searle JB, Cooke HJ, Capanna E (1995) Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma 103: 685-92.

    Article  CAS  PubMed  Google Scholar 

  • Garagna S, Zuccotti M, Redi CA, Capanna E (1997) Trapping speciation. Nature 390: 241-42.

    Article  CAS  PubMed  Google Scholar 

  • Gropp A, Winking H, Redi C (1982) Consequences of Robertsonian heterozygosity: segregational impairment of fertility versus male-limited sterility. In Crosignani PG, Rubin BL, eds., Serono Clinical Colloquia on Reproduction. New York: Academic Press, pp. 115-34.

    Google Scholar 

  • Grützner F, Ashley T, Rowell DM, Marshall Graves JA (2006) How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals. Chromosoma 115: 75-8.

    Article  Google Scholar 

  • Grützner F, Rens W, Tsend-Ayush E et al. (2004) In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432: 913-17.

    Article  PubMed  Google Scholar 

  • Hauffe HC, Pialek J (1997) Evolution of the chromosomal races of Mus musculus domesticus in the Rhaetian Alps: the roles of whole-arm reciprocal translocation and zonal raciation. Biol J Linnean Soc 62: 255-78.

    Google Scholar 

  • Hirai H, Hirai Y, Kawamoto Y, Endo H, Kimura J, Rerkamnuaychoke W (2002) Cytogenetic differentiation of two sympatric tree shrew taxa found in the southern part of the Isthmus of Kra. Chromosome Res 10: 313-27.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Mootnick AR, Takenaka O et al. (2003) Genetic mechanism and property of a whole-arm translocation (WAT) between chromosomes 8 and 9 of agile gibbons (Hylobates agilis). Chromosome Res 11: 37-0.

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Wijayanto H, Tanaka H et al. (2005) A whole-arm translocation (WAT8/9) separating Sumatran and Bornean agile gibbons, and its evolutionary features. Chromosome Res 13: 123-33.

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Chi J, Wang J, Nie W, Su W, Yang F (2006) High-density comparative BAC mapping in the black muntjac (Muntiacus crinifrons): molecular cytogenetic dissection of the origin of MCR 1p+4 in the X1X2Y1Y2Y3 sex chromosome system. Genomics 87: 608-15.

    Article  CAS  PubMed  Google Scholar 

  • Jotterand M (1972) Le polymorphisme chromosomique des Mus (Leggada) africains. Cytogénétique, zoogéographie, évolution. Rev Suisse Zool 79: 287-59.

    CAS  PubMed  Google Scholar 

  • Jotterand-Bellomo M (1981) Le caryotype et la spermatogénèse de Mus setulosus (bandes Q, C, G, et coloration argentique). Genetica 56: 217-27.

    Article  Google Scholar 

  • Jotterand-Bellomo M (1986) Le genre Mus africain, un exemple d’homogénéité caryotypique: étude cytogénétique de Mus minutoides/musculoides (Côte d’Ivoire), de M. setulosus (République Centrafricaine), et de M. mattheyi (Burkina Faso). Cytogenet Cell Genet 42: 99-04.

    Article  Google Scholar 

  • Jotterand-Bellomo M (1988) Chromosome analysis of five specimens of Mus bufo-triton (Muridae) from Burundi (Africa): three cytogenetic entities, a special type of chromosomal sex determination, taxonomy, and phylogeny. Cytogenet Cell Genet 48: 88-1.

    Article  Google Scholar 

  • King M (1993) Species Evolution. The Role of Chromosome Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lima MMC, Seuanez HN (1991) Chromosome studies in the Red Howler Monkey, Alouatta seniculus-stramineus (Platyrrhini, Primates)–Description of an X1X2Y1Y2/X1X1X2X2 sex chromosome system and karyological comparisons with other subspecies. Cytogenet Cell Genet 57: 151-56.

    Article  CAS  PubMed  Google Scholar 

  • Mahadevaiah SK, Setterfield LA, Mittwoch U (1990) Pachytene pairing and sperm counts in mice with single Robertsonian translocations and monobrachial compounds. Cytogenet Cell Genet 53: 26-1.

    Article  CAS  PubMed  Google Scholar 

  • Marshall Graves JA (2006) Sex chromosome specialization and degeneration in mammals. Cell 124: 901-14.

    Article  CAS  Google Scholar 

  • Matthey R (1966a) Le polymorphisme chromosomique des Mus africains du sous-genre Leggada. Révision générale portant sur l’analyse de 213 individus. Rev Suisse Zool 73: 585-07.

    Google Scholar 

  • Matthey R (1966b) Nouvelles contributions à la cytogénétique des Mus africains du sous-genre Leggada. Experientia 22: 400-01.

    Article  CAS  PubMed  Google Scholar 

  • Matthey R (1970) Nouvelles données sur la cytogénétique et la spéciation des Leggada (Mammalia - Rodentia - Muridae). Experientia 26: 102-03.

    Article  CAS  PubMed  Google Scholar 

  • Musser GG, Carleton MD (2005) Superfamily Muroidea. In Wilson DE, Reeder DM, eds., Mammal Species of the World. Baltimore: J. Hopkins University Press, vol. 2, pp. 894–1531.

    Google Scholar 

  • Nanda I, Schneider-Rasp S, Winking H, Schmid M (1995) Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosome Res 3: 399-09.

    Article  CAS  PubMed  Google Scholar 

  • Pialek J, Hauffe HC, Searle JB (2005) Chromosomal variation in the house mouse. Biol J Linnean Soc 84: 535-63.

    Article  Google Scholar 

  • Rahn MI, Mudry M, Merani MS, Solari AJ (1996) Meiotic behavior of the X1X2Y1Y2 quadrivalent of the primate Alouatta caraya. Chromosome Res 4: 350-56.

    Article  CAS  PubMed  Google Scholar 

  • Redi CA, Garagna S, Pelliciari C et al. (1984) Spermatozoa of chromosomally heterozygous mice and their fate in male and female genital tracts. Gamete Res 9: 273-86.

    Article  Google Scholar 

  • Rens W, Fu B, O’Brien PCM, Ferguson-Smith MA (2006) Cross-species chromosome painting. Nature Protocols 1: 783-90.

    Article  CAS  PubMed  Google Scholar 

  • Rens W, Grützner F, O’Brien PCM Fairclough H, Graves JAM, Ferguson-Smith MA (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 101: 16257-6261.

    Article  CAS  PubMed  Google Scholar 

  • Solari AJ, Rahn MI (2005) Fine structure and meiotic behaviour of the male multiple sex chromosomes in the genus Alouatta. Cytogenet Genome Res 108: 262-67.

    Article  CAS  PubMed  Google Scholar 

  • Van Tuinen P, Mootnick AR, Kingswood SC, Hale DW, Kumamoto AT (1999) Complex, compound inversion/translocation polymorphism in an ape: presumptive intermediate stage in the karyotypic evolution of the agile gibbon Hylobates agilis. Am J Phys Anthrop 110: 129-42.

    Article  PubMed  Google Scholar 

  • Vassart M, Seguela A, Hayes H (1995) Chromosomal evolution in gazelles. J Hered 86: 216-27.

    CAS  PubMed  Google Scholar 

  • Veyrunes F (2005) Radiation évolutive des souris naines Africaines, Nannomys (Rodentia, Muridae, Mus): rôle des remaniements chromosomiques dans la spéciation et évolution des systèmes de déterminisme du sexe. Approches phylogénétiques, cytogénétiques et cytogénomiques. PhD thesis, Université Montpellier II, France.

  • Veyrunes F, Britton-Davidian J, Robinson TJ, Calvet E, Denys C, Chevret P (2005) Molecular phylogeny of the African pygmy mice, subgenus Nannomys (Rodentia, Murinae, Mus): implications for chromosomal evolution. Mol Phylogenet Evol 36: 358-69.

    Article  CAS  PubMed  Google Scholar 

  • Veyrunes F, Catalan J, Sicard B et al. (2004) Autosome and sex chromosome diversity among the African pygmy mice, subgenus Nannomys (Muridae; Mus). Chromosome Res 12: 369-82.

    Article  CAS  PubMed  Google Scholar 

  • Veyrunes F, Dobigny G, Yang F et al. (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc R Soc London B 273: 2925-934.

    Article  Google Scholar 

  • White WM, Willard HF, Van Dyke DL, Wolff DJ (1998) The spreading of X inactivation into autosomal material of an X-autosome translocation: evidence for a difference between autosomal and X-chromosomal DNA. Am J Hum Genet 63: 20-8.

    Article  CAS  PubMed  Google Scholar 

  • Wojcik JM, Ratkiewicz M, Searle JB (2002) Evolution of the common shrew Sorex araneus: chromosomal and molecular aspects. Acta Theriol 47(Suppl. 1): 139-67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Veyrunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veyrunes, F., Watson, J., Robinson, T.J. et al. Accumulation of rare sex chromosome rearrangements in the African pygmy mouse, Mus (Nannomys) minutoides: a whole-arm reciprocal translocation (WART) involving an X-autosome fusion. Chromosome Res 15, 223–230 (2007). https://doi.org/10.1007/s10577-006-1116-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1116-8

Key words

Navigation