Skip to main content
Log in

Time-Course Change of Redd1 Expressions in the Hippocampal CA1 Region Following Chronic Cerebral Hypoperfusion

  • Brief Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Redd1, also known as RTP801/Dig2/DDIT4, is a stress-induced protein and marked changes of Redd1 expression occurs in response to hypoxia or cerebral ischemia. In the present study, we examined the time-course changes in Redd1 protein expressions in the rat hippocampal CA1 region following chronic cerebral hypoperfusion (CCH) induced by permanent bilateral common carotid arteries occlusion (2VO). Redd1 immunoreactivity in the pyramidal neurons of the hippocampal CA1 region was increased at 7 days after 2VO surgery, and then the immunoreactivity was decreased with time. Especially, very weak Redd1 immunoreactivity was observed in the hippocampal CA1 region at 28 days after 2VO surgery. Western blot analysis showed that Redd1 level in the hippocampal CA1 region was significantly increased at 7 days following CCH and significantly decreased at 28 days after 2VO surgery, compared with that of the sham-operated group. These results indicate that Redd1 expressions is markedly changed in the hippocampal CA1 region following CCH and that change of Redd1 expression may be associated with the CCH-induced neuronal damage in the hippocampal CA1 region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Cechetti F, Pagnussat AS, Worm PV, Elsner VR, Ben J, da Costa MS, Mestriner R, Weis SN, Netto CA (2012) Chronic brain hypoperfusion causes early glial activation and neuronal death and subsequent long-term memory impairment. Brain Res Bull 87:109–116

    Article  CAS  PubMed  Google Scholar 

  • Ellisen LW (2005) Growth control under stress: mTOR regulation through the REDD1-TSC pathway. Cell Cycle 4:1500–1502

    Article  CAS  PubMed  Google Scholar 

  • Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Farkas E, Donka G, de Vos RA, Mihaly A, Bari F, Luiten PG (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64

    Article  PubMed  Google Scholar 

  • Farkas E, Institoris A, Domoki F, Mihaly A, Bari F (2006) The effect of pre- and posttreatment with diazoxide on the early phase of chronic cerebral hypoperfusion in the rat. Brain Res 1087:168–174

    Article  CAS  PubMed  Google Scholar 

  • Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54:162–180

    Article  CAS  PubMed  Google Scholar 

  • Horak P, Crawford AR, Vadysirisack DD, Nash ZM, DeYoung MP, Sgroi D, Ellisen LW (2010) Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA 107:4675–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, He Z, Guo L, Wang H (2008) Improvement of cognitive deficit and neuronal damage in rats with chronic cerebral ischemia via relative long-term inhibition of rho-kinase. Cell Mol Neurobiol 28:757–768

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Bang JH, Lee J, Kim HW, Sung SH, Han JS, Jeon WK (2015) Salvia miltiorrhiza extract protects white matter and the hippocampus from damage induced by chronic cerebral hypoperfusion in rats. BMC Complement Altern Med 15:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimball SR, Jefferson LS (2012) Induction of REDD1 gene expression in the liver in response to endoplasmic reticulum stress is mediated through a PERK, eIF2alpha phosphorylation, ATF4-dependent cascade. Biochem Biophys Res Commun 427:485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CH, Won MH (2014) Increased dynamin-1 and -2 protein expression in the aged gerbil hippocampus. Cell Mol Neurobiol 34:791–796

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Park JH, Yoo KY, Choi JH, Hwang IK, Ryu PD, Kim DH, Kwon YG, Kim YM, Won MH (2011) Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress. Exp Neurol 229:450–459

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Park JH, Cho JH, Ahn JH, Yan BC, Lee JC, Shin MC, Cheon SH, Cho YS, Cho JH, Kwon YG, Lee DK, Kim YM, Won MH (2014) Changes and expressions of Redd1 in neurons and glial cells in the gerbil hippocampus proper following transient global cerebral ischemia. J Neurol Sci 344:43–50

    Article  CAS  PubMed  Google Scholar 

  • Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Finkel TH, Matsuyama S, Distelhorst CW (2011) Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem 286:30181–30189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  CAS  PubMed  Google Scholar 

  • Ozacmak VH, Barut F, Ozacmak HS (2009) Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats. J Pineal Res 47:156–163

    Article  CAS  PubMed  Google Scholar 

  • Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL, Steffens DC, Willis RJ, Wallace RB (2007) Prevalence of dementia in the United States: the aging, demographics and memory study. Neuroepidemiology 29:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A, Kalinski H, Kamer I, Rozen A, Mor O, Keshet E, Leshkowitz D, Einat P, Skaliter R, Feinstein E (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 22:2283–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanojlovic M, Gusevac I, Grkovic I, Mitrovic N, Zlatkovic J, Horvat A, Drakulic D (2015) Repeated estradiol treatment attenuates chronic cerebral hypoperfusion-induced neurodegeneration in rat hippocampus. Cell Mol Neurobiol. doi:10.1007/s10571-015-0289-0

    PubMed  Google Scholar 

  • Ueno Y, Koike M, Shimada Y, Shimura H, Hira K, Tanaka R, Uchiyama Y, Hattori N, Urabe T (2015) L-carnitine enhances axonal plasticity and improves white-matter lesions after chronic hypoperfusion in rat brain. J Cereb Blood Flow Metab 35:382–391

    Article  CAS  PubMed  Google Scholar 

  • Wu XM, Qian ZM, Zhu L, Du F, Yung WH, Gong Q, Ke Y (2011) Neuroprotective effect of ligustilide against ischaemia-reperfusion injury via up-regulation of erythropoietin and down-regulation of RTP801. Br J Pharmacol 164:332–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Su J, Chen L, Ma B, Gu X, Zhu L (2015) Ginkgolide B protects neurons from ischemic injury by inhibiting the expression of RTP801. Cell Mol Neurobiol 35:943–952

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Wang M, Zhang W, Bai M, Du Y, Zhang Z, Li Z, Miao J (2014) Neuronal damage, central cholinergic dysfunction and oxidative damage correlate with cognitive deficits in rats with chronic cerebral hypoperfusion. Neurobiol Learn Mem 109:7–19

    Article  CAS  PubMed  Google Scholar 

  • Yan BC, Park JH, Shin BN, Ahn JH, Kim IH, Lee JC, Yoo KY, Hwang IK, Choi JH, Park JH, Lee YL, Suh HW, Jun JG, Kwon YG, Kim YM, Kwon SH, Her S, Kim JS, Hyun BH, Kim CK, Cho JH, Lee CH, Won MH (2013) Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke. PLoS One 8:e74886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Shi O, Jin Y, Henrich-Noack P, Qiao H, Cai C, Tao H, Tian X (2014) Functional protection of learning and memory abilities in rats with vascular dementia. Restor Neurol Neurosci 32:689–700

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2058440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choong-Hyun Lee.

Ethics declarations

Conflicts of Interest

The authors declare that they have no potential conflicts of interest.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JA., Lee, CH. Time-Course Change of Redd1 Expressions in the Hippocampal CA1 Region Following Chronic Cerebral Hypoperfusion. Cell Mol Neurobiol 37, 563–569 (2017). https://doi.org/10.1007/s10571-016-0385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0385-9

Keywords

Navigation