Skip to main content

Advertisement

Log in

Inhibited Expression of α4β2 Nicotinic Acetylcholine Receptor in Blood Leukocytes of Chinese Patients with Vascular Dementia and in Blood Leukocytes as Well as the Hippocampus of Brain from Ischemic Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Our present aim was to investigate whether changes in the expression of α4β2 nicotinic acetylcholine receptor (nAChR) in patients with vascular dementia (VaD) and ischemic rats are related to cognitive scores. Blood leukocytes for 59 Chinese patients with VaD (diagnosed on the basis of clinical guidelines) and 31 cases as age-matched controls were examined, and the animal model established employing Pulsinelli’s four-vessel occlusion. The levels of α4 and β2 subunit mRNA in leukocytes and the hippocampus were analyzed by real-time PCR, and the protein level in the hippocampus by Western blotting. The mini-mental state examination was utilized to characterize the intellectual capacity of the patients with reference to the DSM IV diagnosis and Hachinski Ischemic Scale score, and the Morris Water Maze test to assess the ability of learning and memory of the rats. In patients, the level of α4 mRNA, but not β2, in blood leukocytes was clearly lowered, which was significantly correlated to their clinical cognitive test scores. Smoking exerted no impact on the level of α4 mRNA in the present study. In the blood leukocytes and the hippocampus of the brains of the ischemic rats, the levels of both α4 and β2 mRNA were lowered, and the proteins of these subunits in the hippocampus were decreased. The changes of α4 and β2 mRNA in blood leukocytes, and their protein levels in the hippocampus were significantly correlated with impaired learning and memory. These findings indicate that alterations in expression of the α4β2 subtype of nAChR may be involved in the molecular mechanism(s) underlying the cognitive deficit associated with VaD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike A, Takada-Takatori Y, Kume T, Izumi Y (2010) Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of alpha4 and alpha7 receptors in neuroprotection. J Mol Neurosci 40:211–216

    Article  CAS  PubMed  Google Scholar 

  • Amenta F, Di Tullio MA, Tomassoni D (2002) The cholinergic approach for the treatment of vascular dementia: evidence from pre-clinical and clinical studies. Clin Exp Hypertens 24:697–713

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) DSM-IV: diagnostic and statistical manual of mental disorders. 4th edn. American Psychiatric Association, Washington, p 92–4

  • Arosio B, D’Addario C, Gussago C, Casati M, Tedone E, Ferri E, Nicolini P, Rossi PD, Maccarrone M, Mari D (2014) Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly. Biomed Res Int 2014:169203

    Article  PubMed  PubMed Central  Google Scholar 

  • Arroyo-Jim nez MM, Bourgeois JP, Marubio LM, Le Sourd AM, Ottersen OP, Rinvik E, Fairén A, Changeux JP (1999) Ultrastructural localization of the alpha4-subunit of the neuronal acetylcholine nicotinic receptor in the rat substantia nigra. J Neurosci 19:6475–6487

    CAS  PubMed  Google Scholar 

  • Bartsch T, Wulff P (2015) The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience 309:1–16

    Article  CAS  PubMed  Google Scholar 

  • Cedillo JL, Arnalich F, Martín-Sánchez C, Quesada A, Rios JJ, Maldifassi MC, Atienza G, Renart J, Fernández-Capitán C, García-Rio F, López-Collazo E, Montiel C (2015) Usefulness of α7 nicotinic receptor messenger RNA levels in peripheral blood mononuclear cells as a marker for cholinergic antiinflammatory pathway activity in septic patients: results of a pilot study. J Infect Dis 211:146–155

    Article  PubMed  Google Scholar 

  • Colloby SJ, Firbank MJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, McKeith IG, Williams ED, O’Brien JT (2011) Alterations in nicotinic α4β2 receptor binding in vascular dementia using 123I-5IA-85380 SPECT: comparison with regional cerebral blood flow. Neurobiol Aging 32:293–301

    Article  CAS  PubMed  Google Scholar 

  • Degerman S, Domellöf M, Landfors M, Linder J, Lundin M, Haraldsson S, Elgh E, Roos G, Forsgren L (2000) Long leukocyte telomere length at diagnosis is a risk factor for dementia progression in idiopathic parkinsonism. PLoS One 9:e113387

    Article  Google Scholar 

  • Di Lazzaro V, Pilato F, Dileone M, Profice P, Marra C, Ranieri F, Quaranta D, Gainotti G, Tonali PA (2008) In vivo functional evaluation of central cholinergic circuits in vascular dementia. Clin Neurophysiol 119:2494–2500

    Article  PubMed  Google Scholar 

  • Fernández-Gómez FJ, Muñoz-Delgado E, Montenegro MF, Campoy FJ, Vidal CJ, Jordán J (2010) Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. J Neurosci Res 88:155–166

    Article  PubMed  Google Scholar 

  • Ferrari R, Frasoldati A, Leo G, Torri C, Zini I, Agnati LF, Zoli M (1999) Changes in nicotinic acetylcholine receptor subunit mRNAs and nicotinic binding in spontaneously hypertensive stroke prone rats. Neurosci Lett 277:169–172

    Article  CAS  PubMed  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  • Forette F, Seux ML, Staessen JA, Thijs L, Birkenhäger WH, Babarskiene MR, Babeanu S, Bossini A, Gil-Extremera B, Girerd X, Laks T, Lilov E, Moisseyev V, Tuomilehto J, Vanhanen H, Webster J, Yodfat Y, Fagard R (1998) Prevention of dementia in randomised double blind placebo controlled Systolic Hypertension in Europe (Syst Eur) trial. Lancet 352:1347–1351

    Article  CAS  PubMed  Google Scholar 

  • Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:2672–2713

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham A, Court JA, Martin-Ruiz CM, Jaros E, Perry R, Volsen SG, Bose S, Evans N, Ince P, Kuryatov A, Lindstrom J, Gotti C, Perry EK (2002) Immunohistochemical localisation of nicotinic acetylcholine receptor subunits in human cerebellum. Neuroscience 113:493–507

    Article  CAS  PubMed  Google Scholar 

  • Grantham C, Geerts H (2002) The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J Neurol Sci 203–204:131–136

    Article  PubMed  Google Scholar 

  • Guan ZZ, Zhang X, Ravid R, Nordberg A (2000) Decreased protein levels of nicotinic receptor subunits in the hippocampus and temporal cortex of patients with Alzheimer’s disease. J Neurochem 74:237–243

    Article  CAS  PubMed  Google Scholar 

  • Gussago C, Arosio B, Casati M, Ferri E, Gualandris F, Tedone E, Nicolini P, Rossi PD, Abbate C, Mari D (2014) Different adenosine A2A receptor expression in peripheral cells from elderly patients with vascular dementia and Alzheimer’s disease. J Alzheimers Dis 40:45–49

    CAS  PubMed  Google Scholar 

  • Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, Ross Russell RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637

    Article  CAS  PubMed  Google Scholar 

  • Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, Yu Z, Sun FY (2008) Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 39:2837–2844

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80:844–866

    Article  CAS  PubMed  Google Scholar 

  • Jazi R, Lalonde R, Qian S, Strazielle C (2009) Regional brain evaluation of acetylcholinesterase activity in PS1/A246E transgenic mice. Neurosci Res 63:106–114

    Article  CAS  PubMed  Google Scholar 

  • Jellinger KA (2008) The pathology of “vascular dementia”: a critical update. J Alzheimer’s Dis 14:107–123

    CAS  Google Scholar 

  • Kimura S, Saito H, Minami M, Togashi H, Nakamura N, Nemoto M, Parvez HS (2000) Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology 153:167–178

    Article  CAS  PubMed  Google Scholar 

  • Kirshner HS (2009) Vascular dementia: a review of recent evidence for prevention and treatment. Curr Neurol Neurosci Rep 9:437–442

    Article  PubMed  Google Scholar 

  • Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand Suppl 176:34–41

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Morris R, Cahusac PM, Salt TE, Morris RG, Hill RG (1982) A behavioural model for the study of facial nociception and the effects of descending modulatory systems in the rat. J Neurosci Methods 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Nordberg A, Alafuzof L, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:l03–l11

    Article  Google Scholar 

  • O’Neill MJ, Murray TK, Lakics V, Visanji NP, Duty S (2002) The role of neuronal nicotinic acetylcholine receptors in acute and chronic neurodegeneration. Curr Drug Targets CNS Neurol Disord 1:399–411

    Article  PubMed  Google Scholar 

  • Ordy JM, Thomas GJ, Volpe BT, Dunlap WP (1988) Colombo PM. An animal model of human-type memory loss based on aging, lesion, forebrain ischemia, and drug studies with the rat. Neurobiol Aging 9:667–683

    Article  CAS  PubMed  Google Scholar 

  • Ota VK, Noto C, Gadelha A, Santoro ML, Silva PN, Melaragno MI, Smith Mde A, Cordeiro Q, Bressan RA, Belangero SI (2013) Neurotransmitter receptor and regulatory gene expression in peripheral blood of Brazilian drug-naïve first-episode psychosis patients before and after antipsychotic treatment. Psychiatry Res 210:1290–1292

    Article  CAS  PubMed  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  CAS  PubMed  Google Scholar 

  • Perry E, Ziabreva I, Perry R, Aarsland D, Ballard C (2005) Absence of cholinergic deficits in “pure” vascular dementia. Neurology 64:132–133

    Article  CAS  PubMed  Google Scholar 

  • Petersen MH, Budtz-Jørgensen E, Sørensen SA, Nielsen JE, Hjermind LE, Vinther-Jensen T, Nielsen SM, Nørremølle A (2014) Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington’s disease. Mitochondrion 17:14–21

    Article  CAS  PubMed  Google Scholar 

  • Pimlott SL, Piggott M, Owens J, Greally E, Court JA, Jaros E, Perry RH, Perry EK, Wyper D (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29:108–116

    Article  CAS  PubMed  Google Scholar 

  • Pulsinelli WA, Buchan AM (1988) The four-vessel occlusion rat model: method for complete occlusion of vertebral arteries and control of collateral circulation. Stroke 19:913–914

    Article  CAS  PubMed  Google Scholar 

  • Qi XL, Zhang XL, Ou-Yang K, Shan KR, Guan ZZ (2013) The influence of inhibiting or stimulating the expression of the α3 subunit of the nicotinic receptor in SH-SY5Y cells on levels of amyloid-β peptide and β-secretase. Neurochem Int 62:79–83

    Article  CAS  PubMed  Google Scholar 

  • Roman GC (2002) Vascular dementia may be the most common form of dementia in the elderly. J Neurol Sci 203–204:7–10

    Article  PubMed  Google Scholar 

  • Roman GC, Kalaria RN (2006) Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol Aging 27:1769–1785

    Article  CAS  PubMed  Google Scholar 

  • Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, Amaducci L, Brun A, Hofman A, Moody DM, O’Brien MD, Yamaguchi T, Grafman J, Drayer BP, Bennett DA, Fisher M, Ogata J, Kokmen E, Bermejo F, Wolf PA, Gorelick PB, Bick KL, Pajeau AK, Bell MA, DeCarli C, Culebras A, Korczyn AD, Bogousslavsky J, Hartmann A, Scheinberg P (1993) Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. Neurology 43:250–260

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Togashi H, Yoshioka M, Nakamura N, Minami M, Parvez H (1995) Animal models of vascular dementia with emphasis on stroke-prone spontane ously hypertensive rats. Clin Exp Pharmacol Physiol Suppl 1:S257–S259

    Article  Google Scholar 

  • Sakuma M, Hyakawa N, Kato H, Araki T (2008) Time dependent changes of striatal interneurons after focal cerebral ischemia in rats. J Neural Transm 115:413–422

    Article  CAS  PubMed  Google Scholar 

  • Skok MV, Grailhe R, Agenes F, Changeux JP (2007) The role of nicotinic receptors in B-lymphocyte development and activation. Life Sci 80:2334–2336

    Article  CAS  PubMed  Google Scholar 

  • Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, Lamb BT, Montine TJ, Nedergaard M, Schaffer CB, Schneider JA, Wellington C, Wilcock DM, Zipfel GJ, Zlokovic B, Bain LJ, Bosetti Galis ZS, Koroshetz W, Carrillo MC (2015) Vascular contributions to cognitive impairment and dementia including Alzheimer’s disease. Alzheimers Dement 11:710–717

    Article  PubMed  Google Scholar 

  • Togashi H, Kimura S, Matsumoto M, Yoshioka M, Minami M, Saito H (1996) Cholinergic changes in the hippocampus of stroke prone spontaneously hypertensive rats. Stroke 27:520–526

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan A, Rocca WA, Tzourio C (2009) Vascular risk factors and dementia: How to move forward? Neurology 72:368–373

    Article  PubMed  PubMed Central  Google Scholar 

  • Wongsriraksa A, Parsons ME, Whelan CJ (2009) Characterisation of nicotine receptors on human peripheral blood mononuclear cells (PBMC). Inflamm Res 58:38–44

    Article  CAS  PubMed  Google Scholar 

  • Wright CB, Flores A (2015) Vascular contributions to cognitive impairment. Neurol Clin Pract 5:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Guan ZZ, Wu CX, Li Y, Kuang SX, Pei JJ (2012) Correlations between cholinesterase activity and cognitive scores in post-ischemic rats and patients with vascular dementia. Cell Mol Neurobiol 32:399–407

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZX, Zahner GE, Román GC, Liu J, Hong Z, Qu QM, Liu XH, Zhang XJ, Zhou B, Wu CB, Tang MN, Hong X, Li H (2005) Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Arch Neurol 62:447–453

    Article  CAS  PubMed  Google Scholar 

  • Zhang LJ, Xiao Y, Qi XL, Shan KR, Pei JJ, Kuang SX, Liu F, Guan ZZ (2010) Cholinesterase activity and mRNA level of nicotinic acetylcholine receptors (alpha4 and beta2 Subunits) in blood of elderly Chinese diagnosed as Alzheimer’s disease. J Alzheimers Dis 19:849–858

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by grants from the Chinese National Natural Science Foundation (81260173), the Foundation of the Ministry of Education P. R. China (IRT13058), and the Foundation in Guizhou, China ([2014]6008, [2014]06 and [2014]2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Zhong Guan.

Additional information

Yan Xiao and Liang Zhao have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Zhao, L., Kuang, SX. et al. Inhibited Expression of α4β2 Nicotinic Acetylcholine Receptor in Blood Leukocytes of Chinese Patients with Vascular Dementia and in Blood Leukocytes as Well as the Hippocampus of Brain from Ischemic Rats. Cell Mol Neurobiol 36, 1377–1387 (2016). https://doi.org/10.1007/s10571-016-0337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0337-4

Keywords

Navigation