Skip to main content

Advertisement

Log in

Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angelucci F, Mathé AA, Aloe L (2004) Neurotrophic factors and CNS disorders: findings in rodent models of depression and schizophrenia. Prog Brain Res 146:151–165

    Article  CAS  PubMed  Google Scholar 

  • Ardayfio P, Kim KS (2006) Anxiogenic-like effect of chronic corticosterone in the light-dark emergence task in mice. Behav Neurosci 120:249–256

    Article  CAS  PubMed  Google Scholar 

  • Benelli A, Filaferro M, Bertolini A et al (1999) Influence of S-adenosyl-l-methionine on chronic mild stress-induced anhedonia in castrated rats. Br J Pharmacol 127:645–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chourbaji S, Hellweg R, Brandis D et al (2004) Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Mol Brain Res 121:28–36

    Article  CAS  PubMed  Google Scholar 

  • David DJ, Samuels BA, Rainer Q et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  Google Scholar 

  • D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4:183–194

    Article  PubMed  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 45:104–114

    Article  CAS  PubMed  Google Scholar 

  • Holmes A, Wellman CL (2009) Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 33:773–783

    Article  PubMed Central  PubMed  Google Scholar 

  • Ihne JL, Fitzgerald PJ, Hefner KR et al (2012) Pharmacological modulation of stress-induced behavioral changes in the light/dark exploration test in male C57BL/6J mice. Neuropharmacology 6:464–473

    Article  Google Scholar 

  • Jacobsen JP, Mørk A (2006) Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain Res 1110:221–225

    Article  CAS  PubMed  Google Scholar 

  • Jiao J, Opal MD, Dulawa SC (2013) Gestational environment programs adult depression-like behavior through methylation of the calcitonin gene-related peptide gene. Mol Psychiatry 18:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Kawashima H, Numakawa T, Kumamaru E et al (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165:1301–1311

    Article  CAS  PubMed  Google Scholar 

  • Kessler RC, Gruber M, Hettema JM et al (2008) Co-morbid major depression and generalized anxiety disorders in the National Comorbidity Survey follow-up. Psychol Med 38:365–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KS, Han PL (2006) Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J Neurosci Res 83:497–507

    Article  CAS  PubMed  Google Scholar 

  • Kordower JH, Isacson O, Emerich DF (1999) Cellular delivery of trophic factors for the treatment of Huntington’s disease: is neuroprotection possible? Exp Neurol 159:4–20

    Article  CAS  PubMed  Google Scholar 

  • Lambert WM, Xu CF, Neubert TA et al (2013) Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation. Mol Cell Biol 33:3700–3714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucca G, Comim CM, Valvassori SS et al (2008) Chronic mild stress paradigm reduces sweet food intake in rats without affecting brain derived neurotrophic factor protein levels. Curr Neurovasc Res 5:207–213

    Article  CAS  PubMed  Google Scholar 

  • MacMaster FP, Mirza Y, Szeszko PR et al (2008) Amygdala and hippocampal volumes in familial early onset major depressive disorder. Biol Psychiatry 63:385–390

    Article  PubMed Central  PubMed  Google Scholar 

  • McGeary JE, Gurel V, Knopik VS et al (2011) Effects of nerve growth factor (NGF), fluoxetine, and amitriptyline on gene expression profiles in rat brain. Neuropeptides 45:317–322

    Article  CAS  PubMed  Google Scholar 

  • Nikulina EM, Arrillaga-Romany I, Miczek KA et al (2008) Long-lasting alteration in mesocorticolimbic structures after repeated social defeat stress in rats: time course of mu-opioid receptor mRNA and FosB/DeltaFosB immunoreactivity. Eur J Neurosci 27:2272–2284

    Article  PubMed Central  PubMed  Google Scholar 

  • Numakawa T, Kumamaru E, Adachi N et al (2009) Glucocorticoid receptor interaction with TrkB promotes BDNF-triggered PLC-gamma signaling for glutamate release via a glutamate transporter. Proc Natl Acad Sci USA 106:647–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peruga I, Hartwig S, Merkler D et al (2012) Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior. Behav Brain Res 229:325–332

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 21:730–732

    Article  Google Scholar 

  • Réus GZ, Stringari RB, Ribeiro KF et al (2011) Maternal deprivation induces depressive-like behaviour and alters neurotrophin levels in the rat brain. Neurochem Res 36:460–466

    Article  PubMed  Google Scholar 

  • Russo-Neustadt A, Ha T, Ramirez R et al (2001) Physical activity-antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res 120:87–95

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto Y, Ogawa T, Ogawa M et al (2015) Effects of 15-day chronic stress on behavior and neurological changes in the hippocampus of ICR mice. Yakugaku Zasshi 135:151–158

    Article  CAS  PubMed  Google Scholar 

  • Schaaf MJM, de Kloet ER, Vreugdenhil E (2000) Corticosterone effects on BDNF expression in the hippocampus: implications for memory formation. Stress 30:201–208

    Article  Google Scholar 

  • Shi CG, Wang LM, Wu Y et al (2010) Intranasal administration of nerve growth factor produces antidepressant-like effects in animals. Neurochem Res 35:1302–1314

    Article  CAS  PubMed  Google Scholar 

  • Shirayama Y, Chen AC, Nakagawa S et al (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    CAS  PubMed  Google Scholar 

  • Smith MA, Makino S, Kim SY et al (1995a) Stress increases brain-derived neurotropic factor messenger ribonucleic acid in the hypothalamus and pituitary. Endocrinology 136:3743–3750

    CAS  PubMed  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R (1995b) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    CAS  PubMed  Google Scholar 

  • Szegedi A, Jansen WT, van Willigenburg APP et al (2009) Early improvement in the first 2 weeks as a predictor of treatment outcome in patients with major depressive disorder: a meta-analysis including 6562 patients. J Clin Psychiatry 70:344–353

    Article  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1992) BUdR as an S-phase marker for quantitative studies of cytokinetic behaviour in the murine cerebral ventricular zone. J Neurocytol 21:185–197

    Article  CAS  PubMed  Google Scholar 

  • Torner L, Karg S, Blume A et al (2009) Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci 29:1826–1833

    Article  CAS  PubMed  Google Scholar 

  • Uchida S, Hara K, Kobayashi A et al (2011) Impaired hippocampal spinogenesis and neurogenesis and altered affective behavior in mice lacking heat shock factor 1. Proc Natl Acad Sci USA 108:1681–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueyama T, Kawai Y, Nemoto K et al (1997) Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 28:103–110

    Article  CAS  PubMed  Google Scholar 

  • Van Calker D, Zobel I, Dykierek P et al (2009) Time course of response to antidepressants: predictive value of early improvement and effect of additional psychotherapy. J Affect Disord 114:243–253

    Article  PubMed  Google Scholar 

  • Wolkowitz OM, Burke H, Epel ES (2009) Glucocorticoids: mood, memory, and mechanisms. Ann N Y Acad Sci 1179:19–40

    Article  CAS  PubMed  Google Scholar 

  • Yasui-Furukori N, Tsuchimine S, Kaneda A et al (2013) Association between plasma brain-derived neurotrophic factor levels and personality traits in healthy Japanese subjects. Psychiatry Res 210:220–223

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Yoshihisa Kitamura and Dr. Kenshi Takechi for their support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narumi Hashikawa-Hobara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashikawa, N., Ogawa, T., Sakamoto, Y. et al. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse. Cell Mol Neurobiol 35, 807–817 (2015). https://doi.org/10.1007/s10571-015-0174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0174-x

Keywords

Navigation