Skip to main content

Advertisement

Log in

Activation of 5-HT2C Receptor Promotes the Expression of Neprilysin in U251 Human Glioma Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Abeta accumulation, a hallmark of Alzheimer’s disease, promotes the disease progress in multiple facets. Abeta is formed through amyloidogenic cleavage pathway of amyloid precursor protein (APP). Production of Abeta can be decreased via activation of 5-HT2C receptor, which enhances alternative APP non-amyloidogenic cleavage. Besides, as one of the best characterized Aβ degrading enzymes, neprilysin (NEP) in AD progress has drawn more and more attention. We investigated whether there exists any connection between 5-HT2C receptor and NEP expression. The mRNA and protein expressions of NEP were increased after treatment of 5-HT2C receptor agonist RO-60-0175 in concentration- and time-dependent manners, and NEP expression was decreased after treatment of 5-HT2C receptor antagonist SB242084 correspondingly. These results suggest that 5-HT2C receptor may inhibit the Abeta formation by promoting NEP expression. The underlying mechanism will be explored in follow-up study and may provide potential target for AD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23(12):5088–5095

    CAS  PubMed  Google Scholar 

  • Akama KT, Van Eldik LJ (2000) β-Amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1β-and tumor necrosis factor-α (TNFα)-dependent, and involves a TNFα receptor-associated factor- and NFκB-inducing kinase-dependent signaling mechanism. J Biol Chem 275(11):7918–7924

    Article  CAS  PubMed  Google Scholar 

  • Anastasio NC, Lanfranco MF, Bubar MJ, Seitz PK, Stutz SJ, McGinnis AG, Watson CS, Cunningham KA (2010) Serotonin 5-HT2C receptor protein expression is enriched in synaptosomal and post-synaptic compartments of rat cortex. J Neurochem 113(6):1504–1515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Araque A (2008) Astrocytes process synaptic information. Neuron Glia Biol 4(01):3–10

    Article  PubMed  Google Scholar 

  • Arjona AA, Pooler AM, Lee RK, Wurtman RJ (2002) Effect of a 5-HT2C serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res 951(1):135–140

    Article  CAS  PubMed  Google Scholar 

  • Bailey SL, Carpentier PA, McMahon EJ, Begolka WS, Miller SD (2006) Innate and adaptive immune responses of the central nervous system. Crit Rev Immunol 26(2):149–188

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152

    Article  CAS  PubMed  Google Scholar 

  • Chiarini A, Dal Pra I, Menapace L, Pacchiana R, Whitfield JF, Armato U (2005) Soluble amyloid β-peptide and myelin basic protein strongly stimulate, alone and in synergism with combined proinflammatory cytokines, the expression of functional nitric oxide synthase-2 in normal adult human astrocytes. Int J Mol Med 16(5):801–807

    CAS  PubMed  Google Scholar 

  • Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel W, Sathyan A, Hayreh D, D’Angelo G, Benzinger T, Yoon H, Kim J, Morris JC, Mintun MA, Sheline YI (2011) Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc Natl Acad Sci 108(36):14968–14973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9(5):387–398

    Article  CAS  PubMed  Google Scholar 

  • Demars MP, Bartholomew A, Strakova Z, Lazarov O (2011) Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res Ther 2:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami S, Watanabe K, Iwata N, Haraoka J, Lu B, Gerard NP, Gerard C, Fraser P, Westaway D, St George-Hyslop P, Saido TC (2002) Aβ-degrading endopeptidase, neprilysin, in mouse brain: synaptic and axonal localization inversely correlating with Aβ pathology. Neurosci Res 43(1):39–56

    Article  CAS  PubMed  Google Scholar 

  • Grimm MO, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T (2013) Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease. Front Aging Neurosci 5:98

  • Guo L, Zhang J, Yan Q, Yin M (2011) Establishment and characterization of RNA-edited serotonin 2C receptor isoform cell models and alteration of amyloid precursor protein ectodomain secretion in HEK293 APPSwe cells. Hum Cell 24(2):104–111

    Article  CAS  PubMed  Google Scholar 

  • Hersh LB, Rodgers DW (2008) Neprilysin and amyloid β peptide degradation. Curr Alzheimer Res 5(2):225–231

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SM, Mouri A, Kokubo H, Nakajima R, Suemoto T, Higuchi M, Staufenbiel M, Noda Y, Yamaguchi H, Nabeshima T, Saido TC, Iwata N (2006) Neprilysin-sensitive synapse-associated amyloid-β peptide oligomers impair neuronal plasticity and cognitive function. J Biol Chem 281(26):17941–17951

    Article  CAS  PubMed  Google Scholar 

  • Hunter S, Brayne C (2012) Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther 4(2):1–14

    Article  Google Scholar 

  • Iwata N, Mizukami H, Shirotani K, Takaki Y, Muramatsu SI, Lu B, Gerard NP, Gerard C, Ozawa K, Saido TC (2004) Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-β peptide in mouse brain. J Neurosci 24(4):991–998

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, Higuchi M, Staufenbiel M, Muramatsu S, Saido TC (2013) Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 3

  • Jalonen TO, Charniga CJ, Wielt DB (1997) β-Amyloid peptide induced morphological changes coincide with increased K+ and Cl channel activity in rat cortical astrocytes. Brain Res 746(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesch KP, Waider J (2012) Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76(1):175–191

    Article  CAS  PubMed  Google Scholar 

  • Madani R, Poirier R, Wolfer DP, Welzl H, Groscurth P, Lipp HP, Lu B, El Mouedden M, Mercken M, Nitsch RM, Mohajeri MH (2006) Lack of neprilysin suffices to generate murine amyloid-like deposits in the brain and behavioral deficit in vivo. J Neurosci Res 84(8):1871–1878

    Article  CAS  PubMed  Google Scholar 

  • Nitsch RM, Deng M, Growdon JH, Wurtman RJ (1996) Serotonin 5-HT2a and 5-HT2c receptors stimulate amyloid precursor protein ectodomain secretion. J Biol Chem 271(8):4188–4194

    Article  CAS  PubMed  Google Scholar 

  • Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838

    PubMed  Google Scholar 

  • Pithadia AB, Jain SM (2009) 5-Hydroxytryptamine receptor subtypes and their modulators with therapeutic potentials. J Clin Med Res 1(2):72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prà ID, Whitfileld JF, Pacchiana R, Bonafini C, Talacchi A, Chakravarthy B, Armato U, Chiarini A (2011) The amyloid-β42 proxy, amyloid-β25-35, induces normal human cerebral astrocytes to produce amyloid-β42. J Alzheimers Dis 24(2):335–347

    Google Scholar 

  • Radja F, Laporte AM, Daval G, Vergé D, Gozlan H, Hamon M (1991) Autoradiography of serotonin receptor subtypes in the central nervous system. Neurochem Int 18(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Ring S, Weyer SW, Kilian SB, Waldron E, Pietrzik CU, Filippov MA, Herms J, Buchholz C, Eckman CB, Korte M, Wolfer DP, Müller UC (2007) The secreted β-amyloid precursor protein ectodomain APPsα is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J Neurosci 27(29):7817–7826

    Article  CAS  PubMed  Google Scholar 

  • Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR (2005) Alzheimer’s disease β-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 92:226–234

    Article  CAS  PubMed  Google Scholar 

  • Sathyanesan M, Girgenti MJ, Banasr M, Stone K, Bruce C, Guilchicek E, Wilczak-Havill K, Nairn A, Williams K, Sass S, Duman JG, Newton SS (2012) A molecular characterization of the choroid plexus and stress-induced gene regulation. Transl Psychiatry 2:e139

  • Tesseur I, De Strooper B (2013) When the dust settles: what did we learn from the bexarotene discussion? Alzheimers Res Ther 5(6):54

  • Torsvik A, Stieber D, Enger PØ, Golebiewska A, Molven A, Svendsen A, Westermark B, Niclou SP, Olsen TK, Chekenya Enger M, Bjerkvig R (2014) U-251 revisited: genetic drift and phenotypic consequences of longterm cultures of glioblastoma cells. Cancer Med 3(4):812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner AJ, Isaac RE, Coates D (2001) The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. BioEssays 23(3):261–269

    Article  CAS  PubMed  Google Scholar 

  • Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70(1):1–32

    Article  CAS  PubMed  Google Scholar 

  • Van Marum RJ (2008) Current and future therapy in Alzheimer’s disease. Fundam Clin Pharmacol 22(3):265–274

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7(4):399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent AJ, Gasperini R, Foa L, Small DH (2010) Astrocytes in Alzheimer’s disease: emerging roles in calcium dysregulation and synaptic plasticity. J Alzheimers Dis 22(3):699–714

    Article  PubMed  Google Scholar 

  • Westermark B, Ponten J, Hugosson R (1973) Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol Microbiol Scand A 81:791–805

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This Project was supported by the National Natural Science Foundation of China (Grants Number: 81270432), and Science and technology innovation Grant of Shanghai Jiaotong University (Grants Number: 14X130040002).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Yin or Ze-Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, XL., Yu, LH., Li, WQ. et al. Activation of 5-HT2C Receptor Promotes the Expression of Neprilysin in U251 Human Glioma Cells. Cell Mol Neurobiol 35, 425–432 (2015). https://doi.org/10.1007/s10571-014-0138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0138-6

Keywords

Navigation