Skip to main content
Log in

Relationship Between Procalcitonin Serum Levels and Functional Outcome in Stroke Patients

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

To determine whether serum procalcitonin (PCT) levels at admission were associated with short-term functional outcome after acute ischemic stroke (AIS) in a cohort Chinese sample. We prospectively studied 378 patients with AIS who were admitted within 24 h after the onset of symptoms. PCT and NIH stroke scale (NIHSS) were measured at the time of admission. Short-term functional outcome was measured by modified Rankin scale (mRS) 90 days after admission. The results indicated that the serum PCT levels were significantly higher in AIS patients as compared to normal controls (P < 0.0001). In the 114 patients with an unfavorable functional outcome, serum PCT levels were higher compared with those in patients with a favorable outcome (2.40 (IQR, 1.10–3.69) ng/mL and 0.42 (IQR, 0.10–1.05) ng/mL, respectively, P < 0.001). PCT was an independent prognostic marker of functional outcome [odds ratio (OR) 3.45 (2.29–4.77), adjusted for the NIHSS and other possible confounders] in patients with ischemic stroke, added significant additional predictive value to the clinical NIHSS score. In receiver operating characteristic curve analysis, the prognostic accuracy of PCT was higher compared to Hs-CRP and NIHSS score. PCT is an independent predictor of short-term functional outcome after ischemic stroke in Chinese sample even after correcting for possible confounding factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams HP Jr, Bendixen BH, Kappelle LJ et al (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41

    Article  PubMed  Google Scholar 

  • Bonita R (1988) BR (1988) Modification of Rankin Scale: recovery of motor function after stroke. Stroke 19:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Bonita R, Mendis S, Truelsen T et al (2004) The global stroke initiative. Lancet Neurol 3:391–393

    Article  PubMed  Google Scholar 

  • Broderick JP, Brott TG, Duldner JE et al (1993) (1993), Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke 24:987–993

    Article  CAS  PubMed  Google Scholar 

  • Brott T, Marler JR, Olinger CP et al (1989) Measurements of acute cerebral infarction: lesion size by computed tomography. Stroke 20:871–875

    Article  CAS  PubMed  Google Scholar 

  • Castelli GP, Pognani C, Meisner M et al (2004) Procalcitonin and C-reactive protein during systemic inflammatory response syndrome, sepsis and organ dysfunction. Crit Care 8:R234

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang L, Yan H, Li H et al (2014) N-terminal probrain natriuretic peptide levels as a predictor of functional outcomes in patients with ischemic stroke. NeuroReport 25:985–990

    Article  CAS  PubMed  Google Scholar 

  • Emerging Risk Factors Collaboration (2010) C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375:132

    Article  Google Scholar 

  • Fluri F, Morgenthaler NG, Mueller B et al (2012) Copeptin, procalcitonin and routine inflammatory markers-predictors of infection after stroke. PLoS ONE 7:e48309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes B, Castillo J, San José B et al (2009) The prognostic value of capillary glucose levels in acute stroke: the GLycemia in acute stroke (GLIAS) study. Stroke 40:562–568

    Article  CAS  PubMed  Google Scholar 

  • Harbarth S, Holeckova K, Froidevaux C et al (2001) Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 164:396–402

    Article  CAS  PubMed  Google Scholar 

  • ICD-9-CM: International Classification of Diseases 9th Revision Clinical Modification[M] (1980) US Department of Health and Human Services, Public Health Service, Health Care Financing Administration

  • Katan M, Moon YP, DeRosa J et al (2014) Procalcitonin, copeptin and midregional pro-atrial natriuretic peptide as markers of ischemic stroke risk: the northern Manhattan study. Stroke 45(Suppl 1):A54–A54

    Google Scholar 

  • Luyt CE, Guérin V, Combes A et al (2005) Procalcitonin kinetics as a prognostic marker of ventilator-associated pneumonia. Am J Respir Crit Care Med 171:48–53

    Article  PubMed  Google Scholar 

  • Markaki I, Franzén I, Talani C et al (2013) Long-term survival of ischemic cerebrovascular disease in the acute inflammatory stroke study, a hospital-based cohort described by TOAST and ASCO. Cerebrovasc Dis 35:213–219

    Article  CAS  PubMed  Google Scholar 

  • Maruna P, Nedelnikova K, Gurlich R (2000) Physiology and genetics of procalcitonin. Physiol Res 49:S57–S62

    CAS  PubMed  Google Scholar 

  • McGrane S, Girard TD, Thompson JL et al (2011) Procalcitonin and C-reactive protein levels at admission as predictors of duration of acute brain dysfunction in critically ill patients. Crit Care 15(2):R78

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng XN, Li N, Guo DZ et al (2014) High plasma glutamate levels are associated with poor functional outcome in acute ischemic stroke. Cell Mol Neurobiol. doi:10.1007/s10571-014-0107-0

    PubMed  Google Scholar 

  • Mimoz O, Edouard AR, Samii K et al (1998) Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med 24:185–188

    Article  CAS  PubMed  Google Scholar 

  • Rost NS, Wolf PA, Kase CS et al (2001) Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: the Framingham study. Stroke 32:2575–2579

    Article  CAS  PubMed  Google Scholar 

  • Schiopu A, Hedblad B, Engström G et al (2012) Plasma procalcitonin and the risk of cardiovascular events and death: a prospective population-based study. J Intern Med 272:484–491

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Gauvin F, Amre DK et al (2004) Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 39:206–217

    Article  CAS  PubMed  Google Scholar 

  • Slot KB, Berge E, Dorman P et al (2008) Impact of functional status at six months on long term survival in patients with ischaemic stroke: prospective cohort studies. BMJ 336:376–379

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabo K, Kern R, Gass A et al (2001) (2001) Acute stroke patterns in patients with internal carotid artery disease: a diffusion-weighted magnetic resonance imaging study. Stroke 32:1323–1329

    Article  CAS  PubMed  Google Scholar 

  • Tamaki K, Kogata Y, Sugiyama D et al (2008) Diagnostic accuracy of serum procalcitonin concentrations for detecting systemic bacterial infection in patients with systemic autoimmune diseases. J Rheumatol 35:114–119

    CAS  PubMed  Google Scholar 

  • Tu WJ, Dong X, Zhao SJ et al (2013) Prognostic value of plasma neuroendocrine biomarkers in patients with acute ischaemic stroke. J Neuroendocrinol 25:771–778

    Article  CAS  PubMed  Google Scholar 

  • Vibo R, Kõrv J, Roose M et al (2007) Free Radic Res. Acute phase proteins and oxidised low-density lipoprotein in association with ischemic stroke subtype, severity and outcome. Free Radic Res 41:282–287

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ji H, Tong Y et al (2014) Prognostic value of serum 25-hydroxyvitamin D in patients with stroke. Neurochem Res 39:1332–1337

    Article  CAS  PubMed  Google Scholar 

  • Wanner GA, Keel M, Steckholzer U et al (2000) Relationship between procalcitonin plasma levels and severity of injury, sepsis, organ failure, and mortality in injured patients. Crit Care Med 28:950–957

    Article  CAS  PubMed  Google Scholar 

  • Wheeler AP, Bernard GR (1999) Treating patients with severe sepsis. N Engl J Med 340:207–214

    Article  CAS  PubMed  Google Scholar 

  • Whiteley W, Chong WL, Sengupta A et al (2009) Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke 40:e380–e389

    Article  PubMed  Google Scholar 

  • Whiteley W, Wardlaw J, Dennis M et al (2012) The use of blood biomarkers to predict poor outcome after acute transient ischemic attack or ischemic stroke. Stroke 43:86–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We also express our gratitude to all the patients who participated in this study, and thereby made this work possible.

Conflict of interest

The authors have no relevant potential conflicts of interest to declare.

Funding

The author(s) received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Fang Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, WJ., Shen, RL., Li, M. et al. Relationship Between Procalcitonin Serum Levels and Functional Outcome in Stroke Patients. Cell Mol Neurobiol 35, 355–361 (2015). https://doi.org/10.1007/s10571-014-0131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0131-0

Keywords

Navigation