Skip to main content
Log in

Age-Associated Changes of Nitric Oxide Concentration Dynamics in the Central Nervous System of Fisher 344 Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient to fully account for the decay in mental function in aged individuals. Nitric oxide (NO) is a ubiquitous signaling molecule in the mammalian central nervous system. Closely linked to the activation of glutamatergic transmission in several structures of the brain, neuron-derived NO can act as a neuromodulator in synaptic plasticity but has also been linked to neuronal toxicity and degenerative processes. Many studies have proposed that changes in the glutamate-NO signaling pathway may be implicated in age-dependent cognitive decline and that the exact effect of such changes may be region specific. Due to its peculiar physical–chemical properties, namely hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of NO concentration changes are critical determinants for the understanding of its bioactivity in the brain. Here we show a detailed study of how NO concentration dynamics change in the different regions of the brain of Fisher 344 rats (F344) during aging. Using microelectrodes inserted into the living brain of anesthetized F344 rats, we show here that glutamate-induced NO concentration dynamics decrease in the hippocampus, striatum, and cerebral cortex as animals age. performance in behavior testing of short-term and spatial memory, suggesting that the impairment in the glutamate:nNOS pathway represents a functional critical event in cognitive decline during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3):593–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arancio O, Kiebler M, Lee CJ, Lev-Ram V, Tsien RY, Kandel ER, Hawkins RD (1996) Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons. Cell 87(6):1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Barbosa RM, Lourenço CF, Santos RM, Pomerleau F, Huettl P, Gerhardt GA, Laranjinha J (2008) In vivo real-time measurement of nitric oxide in anesthetized rat brain. Methods Enzymol 441:351–367. doi:10.1016/s0076-6879(08)01220-2

    Article  CAS  PubMed  Google Scholar 

  • Barbosa RM, Lopes Jesus AJ, Santos RM, Pereira CL, Marques CF, Rocha BS, Ferreira NR, Ledo A, Laranjinha J (2011) Preparation, standardization and measurement of nitric oxide solutions. Glob J Anal Chem 2(6):272–284

    CAS  Google Scholar 

  • Benedetti MS, Dostert P, Marrari P, Cini M (1993) Effect of ageing on tissue levels of amino acids involved in the nitric oxide pathway in rat brain. J Neural Transmission 94(1):21–30. doi:10.1007/BF01244980

    Article  Google Scholar 

  • Benzing WC, Mufson EJ (1995) Increased number of NADPH-d-positive neurons within the substantia innominata in Alzheimer’s disease. Brain Res 670(2):351–355

    Article  CAS  PubMed  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288):529–535. doi:10.1038/nature08983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol brain 6:5. doi:10.1186/1756-6606-6-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bon CLM, Garthwaite J (2003) On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci 23(5):1941–1948

    CAS  PubMed  Google Scholar 

  • Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5):757–767

    Article  CAS  PubMed  Google Scholar 

  • Budai D (2010) Carbon fiber-based microelectrodes and microbiosensors. In: Somerset VS (ed) Intelligent and Biosensors. Intech, Croatia, pp 269–288

    Google Scholar 

  • Cha CI, Uhm MR, Shin DH, Chung YH, Baik SH (1998) Immunocytochemical study on the distribution of NOS-immunoreactive neurons in the cerebral cortex of aged rats. NeuroReport 9(10):2171–2174

    Article  CAS  PubMed  Google Scholar 

  • Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274(39):27467–27473

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J signal transduct 2012:646354. doi:10.1155/2012/646354

    PubMed Central  PubMed  Google Scholar 

  • Driscoll I, Howard SR, Stone JC, Monfils MH, Tomanek B, Brooks WM, Sutherland RJ (2006) The aging hippocampus: a multi-level analysis in the rat. Neuroscience 139(4):1173–1185. doi:10.1016/j.neuroscience.2006.01.040

    Article  CAS  PubMed  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Kowall NW, Beal MF, Richardson EP Jr, Bird ED, Martin JB (1985) Selective sparing of a class of striatal neurons in Huntington’s disease. Science 230(4725):561–563

    Article  CAS  PubMed  Google Scholar 

  • Ferreira N, Ledo A, Frade J, Gerhardt G, Laranjinha J, Barbosa R (2005) Electrochemical measurement of endogenously produced nitric oxide in brain slices using nafion/o-phenylenediamine modified carbon fiber microelectrodes. Anal Chim Acta 535(1–2):1–7. doi:10.1016/j.aca.2004.12.017

    Article  CAS  Google Scholar 

  • Friedemann MN, Robinson SW, Gerhardt GA (1996) o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68(15):2621–2628

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27(11):2783–2802. doi:10.1111/j.1460-9568.2008.06285.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336(6197):385–388

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Jing Y, Collie ND, Zhang H, Liu P (2012) Ageing alters behavioural function and brain arginine metabolism in male Sprague-Dawley rats. Neuroscience 226:178–196

    Article  CAS  PubMed  Google Scholar 

  • Hardingham N, Fox K (2006) The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation. J neurosci 26(28):7395–7404. doi:10.1523/JNEUROSCI.0652-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Hardingham N, Glazewski S, Pakhotin P, Mizuno K, Chapman PF, Giese KP, Fox K (2003) Neocortical long-term potentiation and experience-dependent synaptic plasticity require alpha-calcium/calmodulin-dependent protein kinase II autophosphorylation. J neurosc 23(11):4428–4436

    CAS  Google Scholar 

  • Heinrich TA, Dasilva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM (2013) Biological nitric oxide signaling: chemistry and terminology (NO chemical biology and terminology). Br J Pharmacol 538(2):120–129

    Google Scholar 

  • Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in hippocampal long-term potentiation. J Neurosci 26(45):11513–11521

    Article  CAS  PubMed  Google Scholar 

  • Jacoby S, Sims RE, Hartell NA (2001) Nitric oxide is required for the induction and heterosynaptic spread of long-term potentiation in rat cerebellar slices. J physiol 535(Pt 3):825–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jung J, Na C, Huh Y (2012) Alterations in nitric oxide synthase in the aged CNS. Oxid Med Cell longev 2012:718976. doi:10.1155/2012/718976

    Article  PubMed Central  PubMed  Google Scholar 

  • Kong Y, Trabucco SE, Zhang H (2014) Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging. Interdiscip Top Gerontol 39:86–107. doi:10.1159/000358901

    Article  PubMed  Google Scholar 

  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5(6):834–842

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Foster TC (2013) Linking redox regulation of NMDAR synaptic function to cognitive decline during aging. J Neurosci 33(40):15710–15715. doi:10.1523/JNEUROSCI.2176-13.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laranjinha J, Ledo A (2007) Coordination of physiologic and toxic pathways in hippocampus by nitric oxide and mitochondria. Front Biosci 12:1094–1106. doi:10.2741/2129

    Article  CAS  PubMed  Google Scholar 

  • Laranjinha J, Santos RM, Lourenço CF, Ledo A, Barbosa RM (2012) Nitric oxide signaling in the brain: translation of dynamics into respiration control and neurovascular coupling. Ann N Y Acad Sci 1259(1):10–18

    Article  CAS  PubMed  Google Scholar 

  • Law A, Dore S, Blackshaw S, Gauthier S, Quirion R (2000) Alteration of expression levels of neuronal nitric oxide synthase and haem oxygenase-2 messenger RNA in the hippocampi and cortices of young adult and aged cognitively unimpaired and impaired Long-Evans rats. Neuroscience 100(4):769–775

    Article  CAS  PubMed  Google Scholar 

  • Law A, Gauthier S, Quirion R (2001) Say NO to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer & apos;s type. Brain Res Brain Res Rev 35(1):73–96

    Article  CAS  PubMed  Google Scholar 

  • Law A, O’Donnell J, Gauthier S, Quirion R (2002) Neuronal and inducible nitric oxide synthase expressions and activities in the hippocampi and cortices of young adult, aged cognitively unimpaired, and impaired long-evans rats. Neuroscience 112(2):267–275

    Article  CAS  PubMed  Google Scholar 

  • Ledo A, Barbosa RM, Frade J, Laranjinha J (2004a) Nitric oxide monitoring in hippocampal brain slices using electrochemical methods. Meth Enzymol 359:111–125

    Article  Google Scholar 

  • Ledo A, Frade J, Barbosa RM, Laranjinha J (2004b) Nitric oxide in brain: diffusion, targets and concentration dynamics in hippocampal subregions. Mol Aspects Med 25(1–2):75–89. doi:10.1016/j.mam.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  • Ledo A, Barbosa RM, Gerhardt GA, Cadenas E, Laranjinha J (2005) Concentration dynamics of nitric oxide in rat hippocampal subregions evoked by stimulation of the NMDA glutamate receptor. Proc Natl Acad Sci USA 102(48):17483–17488. doi:10.1073/pnas.0503624102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ledo A, Barbosa R, Cadenas E, Laranjinha J (2010) Dynamic and interacting profiles of NO and O2 in rat hippocampal slices. Free Radic Biol Med 48(8):1044–1050. doi:10.1016/j.freeradbiomed.2010.01.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, Bankston LA (2002) Cysteine regulation of protein function: as exemplified by NMDA-receptor modulation. Trends Neurosci 25(9):474–480

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Jing Y, Zhang H (2009) Age-related changes in arginine and its metabolites in memory-associated brain structures. Neuroscience 164(2):611–628. doi:10.1016/j.neuroscience.2009.08.029

    Article  CAS  PubMed  Google Scholar 

  • Lourenço C, Santos R, Barbosa R, Gerhardt G, Cadenas E, Laranjinha J (2011) In vivo modulation of nitric oxide concentration dynamics upon glutamatergic neuronal activation in the hippocampus. Hippocampus 21(6):622–630

    Article  PubMed  Google Scholar 

  • Lourenço CF, Ferreira NR, Santos RM, Lukacova N, Barbosa RM, Laranjinha J (2014) The pattern of glutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expression in rat hippocampus, cerebral cortex and striatum. Brain Res 1554:1–11. doi:10.1016/j.brainres.2014.01.030

    Article  PubMed  Google Scholar 

  • Necchi D, Virgili M, Monti B, Contestabile A, Scherini E (2002) Regional alterations of the NO/NOS system in the aging brain: a biochemical, histochemical and immunochemical study in the rat. Brain Res 933(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara H, Doi T, Doya K, Kawato M (2007) Nitric oxide regulates input specificity of long-term depression and context dependence of cerebellar learning. PLoS Comput Biol 3(1):e179. doi:10.1371/journal.pcbi.0020179

    Article  PubMed Central  PubMed  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Publ Group 14(6):383–400

    CAS  Google Scholar 

  • Phillips KG, Hardingham NR, Fox K (2008) Postsynaptic action potentials are required for nitric-oxide-dependent long-term potentiation in CA1 neurons of adult GluR1 knock-out and wild-type mice. J neurosci 28(52):14031–14041. doi:10.1523/JNEUROSCI.3984-08.2008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates 6th edn. Elsevier Inc., Burlington

  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20(2):329–359. doi:10.1016/j.cger.2004.02.005

    Article  PubMed  Google Scholar 

  • Qiu DL, Knopfel T (2007) An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber-Purkinje neuron long-term potentiation. J neurosci 27(13):3408–3415. doi:10.1523/JNEUROSCI.4831-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen T, Schliemann T, Sorensen JC, Zimmer J, West MJ (1996) Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 17(1):143–147

    Article  CAS  PubMed  Google Scholar 

  • Santos RM, Lourenco CF, Piedade AP, Andrews R, Pomerleau F, Huettl P, Gerhardt GA, Laranjinha J, Barbosa RM (2008) A comparative study of carbon fiber-based microelectrodes for the measurement of nitric oxide in brain tissue. Biosens Bioelectron 24(4):704–709. doi:10.1016/j.bios.2008.06.034

    Article  CAS  PubMed  Google Scholar 

  • Santos RM, Lourenco CF, Pomerleau F, Huettl P, Gerhardt GA, Laranjinha J, Barbosa RM (2011) Brain nitric oxide inactivation is governed by the vasculature. Antioxid Redox Signal 14(6):1011–1021. doi:10.1089/ars.2010.3297

    Article  CAS  PubMed  Google Scholar 

  • Shin JH, Linden DJ (2005) An NMDA receptor/nitric oxide cascade is involved in cerebellar LTD but is not localized to the parallel fiber terminal. J Neurophysiol 94(6):4281–4289. doi:10.1152/jn.00661.2005

    Article  CAS  PubMed  Google Scholar 

  • Small SA, Tsai WY, DeLaPaz R, Mayeux R, Stern Y (2002) Imaging hippocampal function across the human life span: is memory decline normal or not? Ann Neurol 51(3):290–295

    Article  PubMed  Google Scholar 

  • Taqatqeh F, Mergia E, Neitz A, Eysel UT, Koesling D, Mittmann T (2009) More than a retrograde messenger: nitric oxide needs two cGMP pathways to induce hippocampal long-term potentiation. J Neurosci 29(29):9344–9350. doi:10.1523/JNEUROSCI.1902-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med 45(1):18–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Unger JW, Lange W (1992) NADPH-diaphorase-positive cell populations in the human amygdala and temporal cortex: neuroanatomy, peptidergic characteristics and aspects of aging and Alzheimer’s disease. Acta Neuropathol 83(6):636–646

    Article  CAS  PubMed  Google Scholar 

  • Yu W-J, Juang S-W, Lee J-J, Liu T-P, Cheng J-T (2000) Decrease of neuronal nitric oxide synthase in the cerebellum of aged rats. Neurosci Lett 291:37–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Portuguese Foundation for Science and Technology (FCT) through the Grants PTDC/SAU-NEU/103538/2008, PEst-C/SAU/LA0001/2011. Lourenço, C.F. acknowledges FCT post-doctoral fellowship SFRH/BPD/82436/2011.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Laranjinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledo, A., Lourenço, C.F., Caetano, M. et al. Age-Associated Changes of Nitric Oxide Concentration Dynamics in the Central Nervous System of Fisher 344 Rats. Cell Mol Neurobiol 35, 33–44 (2015). https://doi.org/10.1007/s10571-014-0115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0115-0

Keywords

Navigation