Skip to main content
Log in

Nimodipine Activates TrkB Neurotrophin Receptors and Induces Neuroplastic and Neuroprotective Signaling Events in the Mouse Hippocampus and Prefrontal Cortex

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The L-type calcium channel blocker nimodipine improves clinical outcome produced by delayed cortical ischemia or vasospasm associated with subarachnoid hemorrhage. While vasoactive mechanisms are strongly implicated in these therapeutic actions of nimodipine, we sought to test whether nimodipine might also regulate neurotrophic and neuroplastic signaling events associated with TrkB neurotrophin receptor activation. Adult male mice were acutely treated with vehicle or nimodipine (10 mg/kg, s.c., 1.5 h) after which the phosphorylation states of TrkB, cyclic-AMP response element binding protein (CREB), protein kinase B (Akt), extracellular regulated kinase (ERK), mammalian target of rapamycin (mTor) and p70S6 kinase (p70S6k) from prefrontal cortex and hippocampus were assessed. Nimodipine increased the phosphorylation of the TrkB catalytic domain and the phosphoslipase-Cγ1 (PLCγ1) domain, whereas phosphorylation of the TrkB Shc binding site remained unaltered. Nimodipine-induced TrkB phosphorylation was associated with increased phosphorylation levels of Akt and CREB in the prefrontal cortex and the hippocampus whereas phosphorylation of ERK, mTor and p70S6k remained unaltered. Nimodipine-induced TrkB signaling was not associated with changes in BDNF mRNA or protein levels. These nimodipine-induced changes on TrkB signaling mimic those produced by antidepressant drugs and thus propose common mechanisms and long-term functional consequences for the effects of these medications. This work provides a strong basis for investigating the role of TrkB-associated signaling underlying the neuroprotective and neuroplastic effects of nimodipine in translationally relevant animal models of brain trauma or compromised synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alborch E, Salom JB, Torregrosa G (1995) Calcium channels in cerebral arteries. Pharmacol Ther 68:1–34

    Article  CAS  PubMed  Google Scholar 

  • Bading H (2013) Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 14:593–608

    Article  CAS  PubMed  Google Scholar 

  • Bhat S, Dao DT, Terrillion CE et al (2012) CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol 99:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calin-Jageman I, Lee A (2008) Ca(v)1 L-type Ca2+ channel signaling complexes in neurons. J Neurochem 105:573–583

    Article  CAS  PubMed  Google Scholar 

  • Castrén E (2013) Neuronal network plasticity and recovery from depression. JAMA Psychiatry 70:983–989

    Article  PubMed  Google Scholar 

  • Castrén E, Hen R (2013) Neuronal plasticity and antidepressant actions. Trends Neurosci 36:259–267

    Article  PubMed Central  PubMed  Google Scholar 

  • Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    Article  PubMed  Google Scholar 

  • Castrén E, Elgersma Y, Maffei L, Hagerman R (2012) Treatment of neurodevelopmental disorders in adulthood. J Neurosci Off J Soc Neurosci 32:14074–14079

    Article  Google Scholar 

  • Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162–171

    Article  CAS  PubMed  Google Scholar 

  • Chollet F, Tardy J, Albucher J-F et al (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10:123–130

    Article  CAS  PubMed  Google Scholar 

  • Cohen C, Perrault G, Sanger DJ (1997) Assessment of the antidepressant-like effects of L-type voltage-dependent channel modulators. Behav Pharmacol 8:629–638

    Article  CAS  PubMed  Google Scholar 

  • Czyrak A, Mogilnicka E, Maj J (1989) Dihydropyridine calcium channel antagonists as antidepressant drugs in mice and rats. Neuropharmacology 28:229–233

    Article  CAS  PubMed  Google Scholar 

  • Czyrak A, Mogilnicka E, Siwanowicz J, Maj J (1990) Some behavioral effects of repeated administration of calcium channel antagonists. Pharmacol Biochem Behav 35:557–560

    Article  CAS  PubMed  Google Scholar 

  • De Jong GI, Buwalda B, Schuurman T, Luiten PG (1992) Synaptic plasticity in the dentate gyrus of aged rats is altered after chronic nimodipine application. Brain Res 596:345–348

    Article  PubMed  Google Scholar 

  • Deák F, Lasztóczi B, Pacher P et al (2000) Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells. Neuropharmacology 39:1029–1036

    Article  PubMed  Google Scholar 

  • Di Lieto A, Rantamäki T, Vesa L et al (2012) The responsiveness of TrkB to BDNF and antidepressant drugs is differentially regulated during mouse development. PLoS One 7:e32869

    Article  PubMed Central  PubMed  Google Scholar 

  • Dorhout Mees SM, Rinkel GJE, Feigin VL et al (2007) Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 18:CD000277

  • Dorsch N (2011) A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture. Acta Neurochir Suppl 110:5–6

    PubMed  Google Scholar 

  • Dreier JP, Windmüller O, Petzold G et al (2002) Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats. Neurosurgery 51:1457–1465 discussion 1465–1467

    PubMed  Google Scholar 

  • Dreier JP, Major S, Manning A et al (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain J Neurol 132:1866–1881

    Article  Google Scholar 

  • Dubovsky SL, Buzan R, Thomas M et al (2001) Nicardipine improves the antidepressant action of ECT but does not improve cognition. J ECT 17:3–10

    Article  CAS  PubMed  Google Scholar 

  • Etminan N, Vergouwen MDI, Ilodigwe D, Macdonald RL (2011) Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 31:1443–1451

    Article  CAS  Google Scholar 

  • Feigin VL, Lawes CM, Bennett DA et al (2009) Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8:355–369

    Article  PubMed  Google Scholar 

  • Frank CA (2014) How voltage-gated calcium channels gate forms of homeostatic synaptic plasticity. Front Cell Neurosci 8:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Gepdiremen A, Sönmez S, Batat I et al (1997) Nimodipine improves kainic acid induced neurotoxicity in cerebellar granular cell culture: a double-blind dose-response study. Fundam Clin Pharmacol 11:117–120

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Palacio-Schjetnan A, Escobar ML (2013) Neurotrophins and synaptic plasticity. Curr Top Behav Neurosci 15:117–136

    Article  PubMed  Google Scholar 

  • Hashioka S, Klegeris A, McGeer PL (2012) Inhibition of human astrocyte and microglia neurotoxicity by calcium channel blockers. Neuropharmacology 63:685–691

    Article  CAS  PubMed  Google Scholar 

  • Hell JW, Westenbroek RE, Warner C et al (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 123:949–962

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karpova NN, Rantamäki T, Di Lieto A et al (2010) Darkness reduces BDNF expression in the visual cortex and induces repressive chromatin remodeling at the BDNF gene in both hippocampus and visual cortex. Cell Mol Neurobiol 30:1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Karpova NN, Pickenhagen A, Lindholm J et al (2011) Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science 334:1731–1734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim TH, Choi SJ et al (2013) Fluoxetine suppresses synaptically induced [Ca2+]i spikes and excitotoxicity in cultured rat hippocampal neurons. Brain Res 1490:23–34

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Mori Y (1998) Ca2+ channel antagonists and neuroprotection from cerebral ischemia. Eur J Pharmacol 363:1–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Zhang M-X, Swank MW et al (2005) Regulation of dendritic morphogenesis by Ras-PI3 K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci Off J Soc Neurosci 25:11288–11299

    Article  CAS  Google Scholar 

  • Laursen J, Jensen F, Mikkelsen E, Jakobsen P (1988) Nimodipine treatment of subarachnoid hemorrhage. Clin Neurol Neurosurg 90:329–337

    Article  CAS  PubMed  Google Scholar 

  • Lazarewicz JW, Pluta R, Puka M, Salinska E (1990) Diverse mechanisms of neuronal protection by nimodipine in experimental rabbit brain ischemia. Stroke J Cereb Circ 21:IV108–IV110

    CAS  Google Scholar 

  • Lipscombe D, Helton TD, Xu W (2004) L-type calcium channels: the low down. J Neurophysiol 92:2633–2641

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhou R, Sun S (2004) Nimodipine modulates Bcl-2 and Bax mRNA expression after cerebral ischemia. J Huazhong Univ Sci Technol Med Sci Hua Zhong Ke Ji Xue Xue Bao Yi Xue Ying Wen Ban Huazhong Keji Daxue Xuebao Yixue Yingdewen Ban 24:170–172

    Article  CAS  Google Scholar 

  • Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10:44–58

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    Article  CAS  PubMed  Google Scholar 

  • Maya Vetencourt JF, Sale A, Viegi A et al (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320:385–388

    Article  CAS  PubMed  Google Scholar 

  • Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860

    Article  CAS  PubMed  Google Scholar 

  • Mogilnicka E, Czyrak A, Maj J (1987) Dihydropyridine calcium channel antagonists reduce immobility in the mouse behavioral despair test; antidepressants facilitate nifedipine action. Eur J Pharmacol 138:413–416

    Article  CAS  PubMed  Google Scholar 

  • Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219

    Article  CAS  PubMed  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 11:7539–7547

    Google Scholar 

  • Nuglisch J, Karkoutly C, Mennel HD et al (1990) Protective effect of nimodipine against ischemic neuronal damage in rat hippocampus without changing postischemic cerebral blood flow. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 10:654–659

    Article  CAS  Google Scholar 

  • Park H, Poo M (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    Article  CAS  PubMed  Google Scholar 

  • Pickard JD, Murray GD, Illingworth R et al (1989) Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ 298:636–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pluta RM, Hansen-Schwartz J, Dreier J et al (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31:151–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poulsen FR, Lauterborn J, Zimmer J, Gall CM (2004) Differential expression of brain-derived neurotrophic factor transcripts after pilocarpine-induced seizure-like activity is related to mode of Ca2+ entry. Neuroscience 126:665–676

    Article  CAS  PubMed  Google Scholar 

  • Rantamäki T, Hendolin P, Kankaanpää A et al (2007) Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 32:2152–2162

    Article  Google Scholar 

  • Rantamäki T, Vesa L, Antila H et al (2011) Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade. PLoS One 6:e20567

    Article  PubMed Central  PubMed  Google Scholar 

  • Regan RF, Choi DW (1994) The effect of NMDA, AMPA/kainate, and calcium channel antagonists on traumatic cortical neuronal injury in culture. Brain Res 633:236–242

    Article  CAS  PubMed  Google Scholar 

  • Ricci A, Sabbatini M, Tomassoni D et al (2002) Neuronal populations of rat cerebral cortex and hippocampus expressed a higher density of L-type Ca2+ channel than corresponding cerebral vessels. Clin Exp Hypertens N Y N 1993 24:715–726

    CAS  Google Scholar 

  • Saarelainen T, Hendolin P, Lucas G et al (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357

    CAS  PubMed  Google Scholar 

  • Segal RA, Bhattacharyya A, Rua LA et al (1996) Differential utilization of Trk autophosphorylation sites. J Biol Chem 271:20175–20181

    Article  CAS  PubMed  Google Scholar 

  • Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37

    Article  PubMed Central  PubMed  Google Scholar 

  • Sheldon S, Macdonald RL, Cusimano M et al (2013) Long-term consequences of subarachnoid hemorrhage: examining working memory. J Neurol Sci 332:145–147

    Article  PubMed  Google Scholar 

  • Sinnegger-Brauns MJ, Hetzenauer A, Huber IG et al (2004) Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels. J Clin Invest 113:1430–1439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taragano FE, Allegri R, Vicario A et al (2001) A double blind, randomized clinical trial assessing the efficacy and safety of augmenting standard antidepressant therapy with nimodipine in the treatment of “vascular depression”. Int J Geriatr Psychiatry 16:254–260

    Article  CAS  PubMed  Google Scholar 

  • Taragano FE, Bagnatti P, Allegri RF (2005) A double-blind, randomized clinical trial to assess the augmentation with nimodipine of antidepressant therapy in the treatment of “vascular depression”. Int Psychogeriatr IPA 17:487–498

    Article  CAS  Google Scholar 

  • Taya K, Watanabe Y, Kobayashi H, Fujiwara M (2000) Nimodipine improves the disruption of spatial cognition induced by cerebral ischemia. Physiol Behav 70:19–25

    Article  CAS  PubMed  Google Scholar 

  • Thomas S, Herrmann B, Samii M, Brinker T (2008) Experimental subarachnoid hemorrhage in the rat: influences of nimodipine. Acta Neurochir Suppl 102:377–379

    Article  PubMed  Google Scholar 

  • Triggle DJ (2006) L-type calcium channels. Curr Pharm Des 12:443–457

    Article  CAS  PubMed  Google Scholar 

  • Uutela M, Lindholm J, Rantamäki T et al (2014) Distinctive behavioral and cellular responses to fluoxetine in the mouse model for fragile X syndrome. Front Cell Neurosci 8:150

    Article  PubMed Central  PubMed  Google Scholar 

  • Vergouwen MDI, Etminan N, Ilodigwe D, Macdonald RL (2011) Lower incidence of cerebral infarction correlates with improved functional outcome after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 31:1545–1553

    Article  PubMed Central  PubMed  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E et al (2003) An L-type calcium channel blocker, nimodipine influences trauma induced spinal cord conduction and axonal injury in the rat. Acta Neurochir Suppl 86:425–432

    CAS  PubMed  Google Scholar 

  • Woitzik J, Dreier JP, Hecht N et al (2012) Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 32:203–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Zafra F, Hengerer B, Leibrock J et al (1990) Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J 9:3545–3550

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34:249–270

    Article  CAS  PubMed  Google Scholar 

  • Zornow MH, Prough DS (1996) Neuroprotective properties of calcium-channel blockers. New Horiz Baltim Md 4:107–114

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Outi Nikkilä and M.Sci. Hanna Antila for technical assistance. We thank Dr. Giuseppe Cortese for language editing.

Disclosure

E.C. is an advisor and shareholder in Herantis Pharma, Inc. E.C. and T.R. have received research support from Orion Pharma, Hermo Pharma and Ono Pharmaceuticals. J.K. has received funding from Maire Taponen foundation for completing thesis. N.M and J.U. have nothing to declare. All authors declare no financial conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Castrén.

Additional information

Janne Koskimäki and Nobuaki Matsui authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koskimäki, J., Matsui, N., Umemori, J. et al. Nimodipine Activates TrkB Neurotrophin Receptors and Induces Neuroplastic and Neuroprotective Signaling Events in the Mouse Hippocampus and Prefrontal Cortex. Cell Mol Neurobiol 35, 189–196 (2015). https://doi.org/10.1007/s10571-014-0110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0110-5

Keywords

Navigation