Skip to main content
Log in

Increased Density of Dystrophin Protein in the Lateral Versus the Vermal Mouse Cerebellum

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Dystrophin, present in muscle, also resides in the brain, including cerebellar Purkinje neurons. The cerebellum, although historically associated with motor abilities, is also implicated in cognition. An absence of brain dystrophin in Duchenne muscular dystrophy (DMD) and in the mdx mouse model results in cognitive impairments. Localization studies of cerebellar dystrophin, however, have focused on the vermal cerebellum, associated with motor function, and have not investigated dystrophin distribution in the lateral cerebellum, considered to mediate cognitive function. The present study examined dystrophin localization in vermal and lateral cerebellar regions and across subcellular areas of Purkinje neurons in the mouse using immunohistochemistry. In both vermal and lateral cerebellum, dystrophin was restricted to puncta on somatic and dendritic membranes of Purkinje neurons. The density of dystrophin puncta was greater in the lateral than the vermal region. Neither the size of puncta nor the area of Purkinje neuron somata differed between regions. Results support the view that cognitive deficits in the DMD and the mdx model may be mediated by the loss of dystrophin, particularly in the lateral cerebellum. Findings have important implications for future studies examining the neurophysiological sequelae of neuronal dystrophin deficiency and the role of the lateral cerebellum in cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL, Head SI, Morley JW (2003) Altered inhibitory input to Purkinje cells of dystrophin-deficient mice. Brain Res 982:280–283

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL, Head SI, Morley JW (2004) Long-term depression is reduced in cerebellar Purkinje cells of dystrophin-deficient mdx mice. Brain Res 1019:289–292

    Article  PubMed  CAS  Google Scholar 

  • Blake DJ, Hawkes R, Benson MA, Beesley PW (1999) Different dystrophin-like complexes are expressed in neurons and glia. J Cell Biol 147:645–658

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Desmond JE (2005) Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24:332–338

    Article  PubMed  Google Scholar 

  • Cotton S, Voudouris NJ, Greenwood KM (2001) Intelligence and Duchenne muscular dystrophy: full-scale, verbal, and performance intelligence quotients. Dev Med Child Neurol 43:497–501

    Article  PubMed  CAS  Google Scholar 

  • Cyrulnik SE, Hinton VJ (2008) Duchenne muscular dystrophy: a cerebellar disorder? Neurosci Biobehav Rev 32:486–496

    Article  PubMed  CAS  Google Scholar 

  • Dorman C, Hurley AD, D’Avignon J (1988) Language and learning disorders in older boys with Duchenne muscular dystrophy. Dev Med Child Neurol 30:316–327

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldowitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:777–807

    Google Scholar 

  • Fulbright RK, Jenner AR, Mencl WE, Pugh KR, Shaywitz BA, Shaywitz SE, Frost SJ, Skudlarski P, Constable RT, Lacadie CM, Marchione KE, Gore JC (1999) The cerebellum’s role in reading: a functional MR imaging study. AJNR Am J Neuroradiol 20:1925–1930

    Google Scholar 

  • Hendriksen JG, Vles JS (2008) Neuropsychiatric disorders in males with Duchenne muscular dystrophy: frequency rate of attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder, and obsessive–compulsive disorder. J Child Neurol 23:477–481

    Article  PubMed  Google Scholar 

  • Hinton VJ, Cyrulnik SE, Fee RJ, Batchelder A, Kiefel JM, Goldstein EM, Kaufmann P, De Vivo DC (2009) Association of autistic spectrum disorders with dystrophinopathies. Pediatr Neurol 41:339–346

    Article  PubMed  Google Scholar 

  • Huard J, Tremblay JP (1992) Localization of dystrophin in the Purkinje cells of normal mice. Neurosci Lett 137:105–108

    Article  PubMed  CAS  Google Scholar 

  • Huard J, Satoh A, Tremblay JP (1992) Mosaic expression of dystrophin in the cerebellum of heterozygote dystrophic (mdx) mice. Neuromuscul Disord 2:311–321

    Article  PubMed  CAS  Google Scholar 

  • Jancsik V, Hajos F (1998) Differential distribution of dystrophin in postsynaptic densities of spine synapses. NeuroReport 9:2249–2251

    Article  PubMed  CAS  Google Scholar 

  • Joyal CC, Meyer C, Jacquart G, Mahler P, Caston J, Lalonde R (1996) Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res 739:1–11

    Article  PubMed  CAS  Google Scholar 

  • Joyal CC, Strazielle C, Lalonde R (2001) Effects of dentate nucleus lesions on spatial and postural sensorimotor learning in rats. Behav Brain Res 122:131–137

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Wu K, Black IB (1995) Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy. Ann Neurol 38:446–449

    Article  PubMed  CAS  Google Scholar 

  • Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM (1999) Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci 11:4457–4462

    Article  PubMed  CAS  Google Scholar 

  • Knuesel I, Zuellig RA, Schaub MC, Fritschy JM (2001) Alterations in dystrophin and utrophin expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe epilepsy. Eur J Neurosci 13:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Kueh SL, Head SI, Morley JW (2008) GABA(A) receptor expression and inhibitory post-synaptic currents in cerebellar Purkinje cells in dystrophin-deficient mdx mice. Clin Exp Pharmacol Physiol 35:207–210

    PubMed  CAS  Google Scholar 

  • Kueh SL, Dempster J, Head SI, Morley JW (2011) Reduced postsynaptic GABAA receptor number and enhanced gaboxadol induced change in holding currents in Purkinje cells of the dystrophin-deficient mdx mouse. Neurobiol Dis 43:558–564

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R, Strazielle C (2003) The effects of cerebellar damage on maze learning in animals. Cerebellum 2:300–309

    Article  PubMed  CAS  Google Scholar 

  • Leggio MG, Molinari M, Neri P, Graziano A, Mandolesi L, Petrosini L (2000) Representation of actions in rats: the role of cerebellum in learning spatial performances by observation. Proc Natl Acad Sci USA 97:2320–2325

    Article  PubMed  CAS  Google Scholar 

  • Leibowitz D, Dubowitz V (1981) Intellect and behaviour in Duchenne muscular dystrophy. Dev Med Child Neurol 23:577–590

    Article  PubMed  CAS  Google Scholar 

  • Lidov HG, Byers TJ, Watkins SC, Kunkel LM (1990) Localization of dystrophin to postsynaptic regions of central nervous system cortical neurons. Nature 348:725–728

    Article  PubMed  CAS  Google Scholar 

  • Lidov HG, Byers TJ, Kunkel LM (1993) The distribution of dystrophin in the murine central nervous system: an immunocytochemical study. Neuroscience 54:167–187

    Article  PubMed  CAS  Google Scholar 

  • Martin LA, Goldowitz D, Mittleman G (2003) The cerebellum and spatial ability: dissection of motor and cognitive components with a mouse model system. Eur J Neurosci 18:2002–2010

    Article  PubMed  Google Scholar 

  • Marvel CL, Desmond JE (2010) Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev 20:271–279

    Article  PubMed  Google Scholar 

  • McKay BE, Molineux ML, Turner RW (2004) Biotin is endogenously expressed in select regions of the rat central nervous system. J Comp Neurol 473:86–96

    Article  PubMed  CAS  Google Scholar 

  • Moukhles H, Carbonetto S (2001) Dystroglycan contributes to the formation of multiple dystrophin-like complexes in brain. J Neurochem 78:824–834

    Article  PubMed  CAS  Google Scholar 

  • Muntoni F, Mateddu A, Serra G (1991) Passive avoidance behaviour deficit in the mdx mouse. Neuromuscul Disord 1:121–123

    Article  PubMed  CAS  Google Scholar 

  • Nyberg-Hansen R, Horn J (1972) Functional aspects of cerebellar signs in clinical neurology. Acta Neurol Scand Suppl 51:219–245

    PubMed  CAS  Google Scholar 

  • Ogasawara A (1989) Downward shift in IQ in persons with Duchenne muscular dystrophy compared to those with spinal muscular atrophy. Am J Ment Retard 93:544–547

    PubMed  CAS  Google Scholar 

  • Perronnet C, Vaillend C (2010) Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J Biomed Biotechnol 2010:849426

    PubMed  Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mitten M, Raichle ME (1989) Positron emission tomographic studies of the processing of single words. J Cognitive Neurosci 1:153–170

    Article  Google Scholar 

  • Pilgram GS, Potikanond S, Baines RA, Fradkin LG, Noordermeer JN (2010) The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol Neurobiol 41:1–21

    Article  PubMed  CAS  Google Scholar 

  • Ryding E, Decety J, Sjoholm H, Stenberg G, Ingvar DH (1993) Motor imagery activates the cerebellum regionally. A SPECT rCBF study with 99mTc-HMPAO. Brain Res Cogn Brain Res 1:94–99

    Article  PubMed  CAS  Google Scholar 

  • Sillitoe RV, Benson MA, Blake DJ, Hawkes R (2003) Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 23:6576–6585

    PubMed  CAS  Google Scholar 

  • Uchino M, Teramoto H, Naoe H, Yoshioka K, Miike T, Ando M (1994a) Localisation and characterisation of dystrophin in the central nervous system of controls and patients with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 57:426–429

    Article  PubMed  CAS  Google Scholar 

  • Uchino M, Yoshioka K, Miike T, Tokunaga M, Uyama E, Teramoto H, Naoe H, Ando M (1994b) Dystrophin and dystrophin-related protein in the brains of normal and mdx mice. Muscle Nerve 17:533–538

    Article  PubMed  CAS  Google Scholar 

  • Vaillend C, Rendon A, Misslin R, Ungerer A (1995) Influence of dystrophin-gene mutation on mdx mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing tasks. Behav Genet 25:569–579

    Article  PubMed  CAS  Google Scholar 

  • Vaillend C, Billard JM, Laroche S (2004) Impaired long-term spatial and recognition memory and enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd (mdx) mouse. Neurobiol Dis 17:10–20

    Article  PubMed  CAS  Google Scholar 

  • Vajnerova O, Zhuravin IA, Brozek G (2000) Functional ablation of deep cerebellar nuclei temporarily impairs learned coordination of forepaw and tongue movements. Behav Brain Res 108:189–195

    Article  PubMed  CAS  Google Scholar 

  • Villarreal RP, Steinmetz JE (2005) Neuroscience and learning: lessons from studying the involvement of a region of cerebellar cortex in eyeblink classical conditioning. J Exp Anal Behav 84:631–652

    Article  PubMed  Google Scholar 

  • Whelan TB (1987) Neuropsychological performance of children with Duchenne muscular dystrophy and spinal muscle atrophy. Dev Med Child Neurol 29:212–220

    Article  PubMed  CAS  Google Scholar 

  • Wu JY, Kuban KC, Allred E, Shapiro F, Darras BT (2005) Association of Duchenne muscular dystrophy with autism spectrum disorder. J Child Neurol 20:790–795

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by an operating Grant from Manitoba Institute for Child Health (JEA and MF) and a Postgraduate Scholarship from the Natural Sciences and Engineering Research Council (WMS). The funders did not contribute to the study design, interpretation, or manuscript preparation. The authors wish to thank Ms. R. Upadhaya and Dr. W. Mizunoya (Kyushu University) for advice with cryosectioning and immunostaining and Dr. James Hare for assistance with the statistical analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy E. Anderson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 92 kb)

Supplementary material 2 (MPG 116 kb)

Supplementary material 3 (MPG 174 kb)

Supplementary material 4 (MPG 50 kb)

Supplementary material 5 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snow, W.M., Fry, M. & Anderson, J.E. Increased Density of Dystrophin Protein in the Lateral Versus the Vermal Mouse Cerebellum. Cell Mol Neurobiol 33, 513–520 (2013). https://doi.org/10.1007/s10571-013-9917-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-9917-8

Keywords

Navigation