Skip to main content

Advertisement

Log in

Hypoxia Inducible Factor-1: Its Potential Role In Cerebral Ischemia

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A divergence in the supply and consumption of oxygen in brain tissue initiates complex cycle of biochemical and molecular events resulting in neuronal death. To overcome such adverse situation, the tissue has to adopt some cellular mechanisms such as induction of various transcription factors, such as hypoxia inducible factor (HIF). It is a transcriptional regulator of oxygen homeostasis and key factor to generate the adaptive responses through upregulation of various target genes involved in the erythropoiesis, angiogenesis as well as glucose metabolism and transport. On the other hand, some studies do suggest that HIF also plays a detrimental role in ischemic reperfusion injury by inducing the pro apoptotic molecules, cytokines such as Nix, BNip3, and IL-20 which cause mitochondrial dysfunction leading to cell death. Hence, modulation of HIF-1 activity seems to provide an innovative therapeutic target to reduce the cellular damage, which arises from ischemic injury. Apart from traditional oxygen dependent HIF regulation, the focus has now shifted toward oxygen independent regulation in cell specific manner through reactive oxygen species involving hypoxia-associated factor, and heat shock protein 90, etc. Therefore, future development of such small molecule regulators for HIF-1 stability and signaling may prove useful to therapeutically target for enhancing recovery and repair in I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

17-AAG:

17-Allylaminogeldanamycin

AD:

Alzheimer disease

Ahr:

Aryl hydrocarbon receptor

ARD1:

Arrest defective protein

ARNT:

Aryl hydrocarbon receptor nuclear transporter

CBP:

cAMP-response element-binding protein

Cbz-LLL:

N-carbobenzoxyl-l-leucinyl-l-leucinyl-l-norvalinal

DFO:

Desferoxamine

DHB:

Dihydroxybenzoic acid

DMOG:

Dimethyloxallyl glycine

Epo:

Erythropoietin

ePAS1:

Endothelial PAS domain protein 1

FIH:

Factor-inhibiting hypoxia

GSK:

Glycogen synthase kinase

GLUT:

Glucose transporter

HAF:

Hypoxia-associated factor

HIF-1:

Hypoxia inducible factor-1

HLH:

Helix–loop–helix

HRD:

Hypoxia-responsive domain

HO:

Hemo oxygenase

HRE:

Hypoxia-responsive element

HSP:

Heat shock protein

iNOS:

Inducible nitric oxide synthase

I/R injury:

Ischemia reperfusion injury

LDH:

Lactate dehydrogenase

MCAO:

Middle cerebral artery occlusion

2ME:

2-Methoxyestradiol

MMP:

Matrix metalloproteinase

Ngb:

Neuroglobin

NGF:

Nerve growth factor

ODDD:

Oxygen-dependent degradation domain

PHD:

Prolyl 4-hydroxylase enzyme

pVHL:

Von Hippel–Lindau tumor suppressor protein

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

PTEN:

Phosphatase/tensin homolog deleted on chromosome 10

RACK:

Receptor of activated protein kinase C

SUMO:

Small ubiquitin-like modifiers

SENP:

Sentrin-specific peptidase

VEGF:

Vascular endothelial growth factor

References

  • Agani FH, Pichiule P, Chavez JC, LaManna JC (2000) The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 275:35863–35867

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu Y, Haga M, Tyagi S, Yamashita K, Graca-Souza AV, Ollinger R, Czismadia E, May GA, Ifedigbo E, Otterbein LE (2004) Heme oxygenase-1-derived carbon monoxide protects hearts from transplant associated ischemia reperfusion injury. FASEB J 18:771–772

    PubMed  CAS  Google Scholar 

  • Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  PubMed  CAS  Google Scholar 

  • Banasiak KJ, Haddad GG (1998) Hypoxia-induced apoptosis: effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res 797:295–304

    Article  PubMed  CAS  Google Scholar 

  • Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27:6320–6332

    Article  PubMed  CAS  Google Scholar 

  • Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11:4159–4170

    Article  PubMed  CAS  Google Scholar 

  • Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  PubMed  CAS  Google Scholar 

  • Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, MacKenzie ET, Petit E (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278

    Article  PubMed  CAS  Google Scholar 

  • Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P (2002) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22:393–403

    Article  PubMed  CAS  Google Scholar 

  • Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22:4082–4090

    Article  PubMed  CAS  Google Scholar 

  • Bruick RK (2003) Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev 17:2614–2623

    Article  PubMed  CAS  Google Scholar 

  • Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Brusselmans K, Bono F, Maxwell P, Dor Y, Dewerchin M, Collen D, Herbert JM, Carmeliet P (2001) Hypoxia-inducible factor-2alpha (HIF-2alpha) is involved in the apoptotic response to hypoglycemia but not to hypoxia. J Biol Chem 276:39192–39196

    Article  PubMed  CAS  Google Scholar 

  • Callapina M, Zhou J, Schmid T, Kohl R, Brune B (2005) NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Free Radic Biol Med 39:925–936

    Article  PubMed  CAS  Google Scholar 

  • Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131:309–323

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  PubMed  CAS  Google Scholar 

  • Cervera AM, Apostolova N, Luna-Crespo F, Sanjuan-Pla A, Garcia-Bou R, McCreath KJ (2006) An alternatively spliced transcript of the PHD3 gene retains prolyl hydroxylase activity. Cancer Lett 233:131–138

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Jiang X, Zhao C, Lee C, Ferriero DM (2008) Exogenous low dose hydrogen peroxide increases hypoxia-inducible factor-1alpha protein expression and induces preconditioning protection against ischemia in primary cortical neurons. Neurosci Lett 441:134–138

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Hsieh CY, Peng ZA, Yen TL, Hsiao G, Chou DS, Chen CM, Sheu JR (2009) Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats. J Biomed Sci 16:9

    Article  PubMed  CAS  Google Scholar 

  • Chavez JC, LaManna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22:8922–8931

    PubMed  CAS  Google Scholar 

  • Chavez JC, Agani F, Pichiule P, LaManna JC (2000) Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol 89:1937–1942

    PubMed  CAS  Google Scholar 

  • Chen WY, Chang MS (2009) IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J Immunol 182:5003–5012

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131:584–595

    Article  PubMed  CAS  Google Scholar 

  • Chin K, Yu X, Beleslin-Cokic B, Liu C, Shen K, Mohrenweiser HW, Noguchi CT (2000) Production and processing of erythropoietin receptor transcripts in brain. Brain Res Mol Brain Res 81:29–42

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Kang JQ, Maiese K (2002) Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 106:2973–2979

    Article  PubMed  CAS  Google Scholar 

  • Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J Biol Chem 275:25733–25741

    Article  PubMed  CAS  Google Scholar 

  • Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, Plaisance S, Dor Y, Keshet E, Lupu F, Nemery B, Dewerchin M, Van Veldhoven P, Plate K, Moons L, Collen D, Carmeliet P (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8:702–710

    PubMed  CAS  Google Scholar 

  • Demidenko ZN, Rapisarda A, Garayoa M, Giannakakou P, Melillo G, Blagosklonny MV (2005) Accumulation of hypoxia-inducible factor-1alpha is limited by transcription-dependent depletion. Oncogene 24:4829–4838

    Article  PubMed  CAS  Google Scholar 

  • Dery MA, Michaud MD, Richard DE (2004) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535–540

    Article  CAS  Google Scholar 

  • Ding Q, Dimayuga E, Keller JN (2006) Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS. Antioxid Redox Signal 8:163–172

    Article  PubMed  CAS  Google Scholar 

  • Ebert BL, Firth JD, Ratcliffe PJ (1995) Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J Biol Chem 270:29083–29089

    Article  PubMed  CAS  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94:4273–4278

    Article  PubMed  CAS  Google Scholar 

  • Epstein ACR, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  PubMed  CAS  Google Scholar 

  • Feldser D (1999) Reciprocal positive regulation of hypoxia inducible factor 1α and insulin-like growth factor 2. Cancer Res 59:3915–3918

    PubMed  CAS  Google Scholar 

  • Firth JD, Ebert BL, Ratcliffe PJ (1995) Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 270:21021–21027

    Article  PubMed  CAS  Google Scholar 

  • Flugel D, Gorlach A, Michiels C, Kietzmann T (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27:3253–3265

    Article  PubMed  CAS  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  • Freeman RS, Hasbani DM, Lipscomb EA, Straub JA, Xie L (2003) SM-20, EGL-9, and the EGLN family of hypoxia-inducible factor prolyl hydroxylases. Mol Cells 16:1–12

    PubMed  CAS  Google Scholar 

  • Furuichi T, Liu W, Shi H, Miyake M, Liu KJ (2005) Generation of hydrogen peroxide during brief oxygen-glucose deprivation induces preconditioning neuronal protection in primary cultured neurons. J Neurosci Res 79:816–824

    Article  PubMed  CAS  Google Scholar 

  • Giusti S, Plazas SFD (2011) Neuroprotection by hypoxic preconditioning involves upregulation of hypoxia-inducible factor-1 in a prenatal model of acute hypoxia. J Neurosci Res 22766:468–478

    Google Scholar 

  • Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ (1995) Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 268:1362–1368

    Google Scholar 

  • Goldberg MA, Glass GA, Cunningham JM, Bunn HF (1987) The regulated expression of erythropoietin by two human hepatoma cell lines. Proc Natl Acad Sci USA 84:7972–7976

    Article  PubMed  CAS  Google Scholar 

  • Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  • Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang BH, Liu KJ, Shi H (2008) Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem 105:1849–1860

    Article  PubMed  CAS  Google Scholar 

  • Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    Article  PubMed  CAS  Google Scholar 

  • Haddad JJ (2002) Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 14:879–897

    Article  PubMed  CAS  Google Scholar 

  • Halterman MW, Miller CC, Federoff HJ (1999) Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci 19:6818–6824

    PubMed  CAS  Google Scholar 

  • Hanauske-Abel HM, Günzler V (1982) A stereochemical concept for the catalytic mechanism of prolylhydroxylase: applicability to classification and design of inhibitors. J Theor Biol 94:421–455

    Article  PubMed  CAS  Google Scholar 

  • Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N (2001) Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun 287:808–813

    Article  PubMed  CAS  Google Scholar 

  • Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C, Blouw B, Ouyang L, Dragatsis I, Zeitlin S, Johnson RS, Lipton SA, Barlow C (2005) Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci 25:4099–4107

    Article  PubMed  CAS  Google Scholar 

  • Higashida T, Kreipke CW, Rafols JA, Peng C, Schafer S, Schafer P, Ding JY, Dornbos D III, Li X, Guthikonda M, Rossi NF, Ding Y (2011a) The role of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 114(1):92–101

    Article  PubMed  CAS  Google Scholar 

  • Higashida T, Peng C, Li J, Dornbos D III, Teng K, Li X, Kinni H, Guthikonda M, Ding Y (2011b) Hypoxia-inducible factor-1α contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr Neurovasc Res 8(1):44–51

    Article  PubMed  CAS  Google Scholar 

  • Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA (1997) Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272:8581–8593

    Article  PubMed  CAS  Google Scholar 

  • Hogenesch JB, Gu YZ, Moran SM, Shimomura K, Radcliffe LA, Takahashi JS, Bradfield CA (2000) The basic helix-loop-helix-PAS protein MOP9 is a brain-specific heterodimeric partner of circadian and hypoxia factors. J Neurosci 20:RC83

    PubMed  CAS  Google Scholar 

  • Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY (2002) Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417:975–978

    Article  PubMed  CAS  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhao Q, Mooney SM, Lee FS (2002) Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 277:39792–39800

    Article  PubMed  CAS  Google Scholar 

  • Hur E, Kim HH, Choi SM, Kim JH, Yim S, Kwon HJ, Choi Y, Kim DK, Lee MO, Park H (2002) Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol Pharmacol 62:975–982

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Zhang F, Casey R, Clark HB, Ross ME (1996) Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27:1373–1380

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Nomura M (1997) cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 233:258–264

    Article  PubMed  CAS  Google Scholar 

  • Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277:29936–29944

    Article  PubMed  CAS  Google Scholar 

  • Ivan M, Kaelin WG (2001) The von Hippel–Lindau tumor suppressor protein. Curr Opin Genet Dev 11:27–34

    Article  PubMed  CAS  Google Scholar 

  • Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111:709–720

    Article  PubMed  CAS  Google Scholar 

  • Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    Article  PubMed  CAS  Google Scholar 

  • Jung F, Palmer LA, Zhou N, Johns RA (2000) Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86:319–325

    PubMed  CAS  Google Scholar 

  • Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17:6573–6586

    Article  PubMed  CAS  Google Scholar 

  • Katschinski DM, Le L, Heinrich D, Wagner KF, Hofer T, Schindler SG, Wenger RH (2002) Heat induction of the unphosphorylated form of hypoxia-inducible factor-1alpha is dependent on heat shock protein-90 activity. J Biol Chem 277:9262–9267

    Article  PubMed  CAS  Google Scholar 

  • Khanna S, Roy S, Maurer M, Ratan RR, Sen CK (2006) Oxygen-sensitive reset of hypoxia-inducible factor transactivation response: prolyl hydroxylases tune the biological normoxic set point. Free Radic Biol Med 40:2147–2154

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Huh PW, Kim C, Kim YJ, Park EM, Park YM (2001) Cerebral activation and distribution of inducible hsp110 and hsp70 mRNAs following focal ischemia in rat. Toxicology 167:135–144

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH (2004) BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J Exp Med 199:113–124

    Article  PubMed  CAS  Google Scholar 

  • Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J (2006) Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol 26:2019–2028

    Article  PubMed  CAS  Google Scholar 

  • Kotch LE, Iyer NV, Laughner E, Semenza GL (1999) Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209:254–267

    Article  PubMed  CAS  Google Scholar 

  • Krishnamachary B (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–1143

    PubMed  CAS  Google Scholar 

  • Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794–1798

    Article  PubMed  CAS  Google Scholar 

  • Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci USA 99:12825–12830

    Article  PubMed  CAS  Google Scholar 

  • Lakhani NJ, Sarkar M, Venitz J, Figg WD (2003) 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy 23:165–172

    Article  PubMed  CAS  Google Scholar 

  • Larsson E, Nanobashvili A, Kokaia Z, Lindvall O (1999) Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J Cereb Blood Flow Metab 19:1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Lavista-Llanos S, Centanin L, Irisarri M, Russo DM, Gleadle JM, Bocca SN, Muzzopappa M, Ratcliffe PJ, Wappner P (2002) Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Mol Cell Biol 22:6842–6853

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MS, Sun GH, Kunis DM, Saydam TC, Dash R, Ho DY, Sapolsky RM, Steinberg GK (1996) Overexpression of the glucose transporter gene with a herpes simplex viral vector protects striatal neurons against stroke. J Cereb Blood Flow Metab 16:181–185

    Article  PubMed  CAS  Google Scholar 

  • Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG (2001) Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 170:129–139

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhang X, Sejas DP, Bagby GC, Pang Q (2004) Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J Biol Chem 279:41275–41279

    Article  PubMed  CAS  Google Scholar 

  • Li YX, Ding SJ, Xiao L, Guo W, Zhan Q (2008) Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1 alpha and erythropoietin. Neurosci Bull 24:89–95

    Article  PubMed  Google Scholar 

  • Li Y, Lim S, Hoffman D, Aspenstrom P, Federoff HJ, Rempe DA (2009) HUMMR, a hypoxia- and HIF-1alpha-inducible protein, alters mitochondrial distribution and transport. J Cell Biol 185:1065–1081

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Circ Res 77:638–643

    PubMed  CAS  Google Scholar 

  • Liu Q, Berchner-Pfannschmidt U, Moller U, Brecht M, Wotzlaw C, Acker H, Jungermann K, Kietzmann T (2004) A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 101:4302–4307

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Narasimhan P, Yu F, Chan PH (2005) Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke 36:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL (2007) RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell 25:207–217

    Article  PubMed  CAS  Google Scholar 

  • Lomb DJ, Desouza LA, Franklin JL, Freeman RS (2009) Prolyl hydroxylase inhibitors depend on extracellular glucose and hypoxia-inducible factor (HIF)-2alpha to inhibit cell death caused by nerve growth factor (NGF) deprivation: evidence that HIF-2alpha has a role in NGF-promoted survival of sympathetic neurons. Mol Pharmacol 75:1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia reperfusion. Cell Death Differ 15:686–690

    Article  PubMed  CAS  Google Scholar 

  • Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, Zhong H (2002) Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res 62:2478–2482

    PubMed  CAS  Google Scholar 

  • Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554

    Article  PubMed  CAS  Google Scholar 

  • Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277:32405–32408

    Article  PubMed  CAS  Google Scholar 

  • Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1:393–399

    Article  PubMed  CAS  Google Scholar 

  • Marti HH, Risau W (1999) Angiogenesis in ischemic disease. Thromb Haemost 82:44–52

    PubMed  Google Scholar 

  • Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    Article  PubMed  CAS  Google Scholar 

  • Matrone C, Pignataro G, Molinaro P, Irace C, Scorziello A, Di Renzo GF, Annunziato L (2004) HIF-1alpha reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion. J Neurochem 90:368–378

    Article  PubMed  CAS  Google Scholar 

  • Matsuura H, Ichiki T, Ikeda J, Takeda K, Miyazaki R, Hashimoto T, Narabayashi E, Kitamoto S, Tokunou T, Sunagawa K (2011) Inhibition of prolyl hydroxylase domain-containing protein downregulates vascular angiotensin II type 1 receptor. Hypertension 58(3):386–393

    Article  PubMed  CAS  Google Scholar 

  • McLaren AT, Marsden PA, Mazer CD, Baker AJ, Stewart DJ, Tsui AK, Li X, Yucel Y, Robb M, Boyd SR, Liu E, Yu J, Hare GM (2007) Increased expression of HIF-1alpha, nNOS, and VEGF in the cerebral cortex of anemic rats. Am J Physiol Regul Integr Comp Physiol 292:R403–R414

    Article  PubMed  CAS  Google Scholar 

  • Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54:34–66

    Article  PubMed  CAS  Google Scholar 

  • Mellor HR, Harris AL (2007) The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev 26:553–566

    Article  PubMed  CAS  Google Scholar 

  • Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M, Huang WQ, Wotzlaw C, Hellwig-Burgel T, Jelkmann W, Acker H, Fandrey J (2003) Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci 116:1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP (2002) Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–1889

    Article  PubMed  CAS  Google Scholar 

  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460:251–256

    Article  PubMed  CAS  Google Scholar 

  • Nagel S, Papadakis M, Chen R, Hoyte LC, Brooks KJ, Gallichan D, Sibson NR, Pugh C, Buchan AM (2011) Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 31:132–143

    Article  PubMed  CAS  Google Scholar 

  • Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37:7–38

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97:8386–8391

    Article  PubMed  CAS  Google Scholar 

  • Piret JP, Lecocq C, Toffoli S, Ninane N, Raes M, Michiels C (2004) Hypoxia and CoCl2 protect HepG2 cells against serum deprivation- and t-BHP-induced apoptosis: a possible anti-apoptotic role for HIF-1. Exp Cell Res 295:340–349

    Article  PubMed  CAS  Google Scholar 

  • Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, Kapinya K, Dirnagl U, Meisel A (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34:1981–1986

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    CAS  Google Scholar 

  • Rauca C, Zerbe R, Jantze H, Krug M (2000) The importance of free hydroxyl radicals to hypoxia preconditioning. Brain Res 868:147–149

    Article  PubMed  CAS  Google Scholar 

  • Regula KM, Ens K, Kirshenbaum LA (2002) Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 91:226–231

    Article  PubMed  CAS  Google Scholar 

  • Reisz-Porszasz S, Probst MR, Fukunaga BN, Hankinson O (1994) Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT). Mol Cell Biol 14:6075–6086

    Article  PubMed  CAS  Google Scholar 

  • Reyes H, Reisz-Porszasz S, Hankinson O (1992) Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science 256:1193–1195

    Article  PubMed  CAS  Google Scholar 

  • Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274:32631–32637

    Article  PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU (2002) Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13:1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, Priller J, Dirnagl U, Meisel A (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22:10291–10301

    PubMed  CAS  Google Scholar 

  • Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, Masuda S, Sasaki R (1998) Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253:26–32

    Article  PubMed  CAS  Google Scholar 

  • Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95:4635–4640

    Article  PubMed  CAS  Google Scholar 

  • Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan-Pla A, Cervera AM, Apostolova N, Garcia-Bou R, Victor VM, Murphy MP, McCreath KJ (2005) A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett 579:2669–2674

    Article  PubMed  CAS  Google Scholar 

  • Sasabe E, Tatemoto Y, Li D, Yamamoto T, Osaki T (2005) Mechanism of HIF-1alpha-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci 96:394–402

    Article  PubMed  CAS  Google Scholar 

  • Schabitz WR, Schwab S, Spranger M, Hacke W (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 17:500–506

    Article  PubMed  CAS  Google Scholar 

  • Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182

    Article  CAS  Google Scholar 

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    PubMed  CAS  Google Scholar 

  • Seth P, Krop I, Porter D, Polyak K (2002) Novel estrogen and tamoxifen induced genes identified by SAGE (serial analysis of gene expression). Oncogene 21:836–843

    Article  PubMed  CAS  Google Scholar 

  • Sharp FR, Bergeron M, Bernaudin M (2001) Hypoxia-inducible factor in brain. Adv Exp Med Biol 502:273–291

    PubMed  CAS  Google Scholar 

  • Sharp FR, Ran R, Lu A, Tang Y, Strauss KI, Glass T, Ardizzone T, Bernaudin M (2004) Hypoxic preconditioning protects against ischemic brain injury. NeuroRx 1:26–35

    Article  PubMed  Google Scholar 

  • Shi Q, Zhang P, Zhang J, Chen X, Lu H, Tian Y, Parker TL, Liu Y (2009) Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neurosci Lett 465:220–225

    Article  PubMed  CAS  Google Scholar 

  • Shichijo S, Nakao M, Imai Y, Takasu H, Kawamoto M, Niiya F, Yang D, Toh Y, Yamana H, Itoh K (1998) A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. J Exp Med 187:277–288

    Article  PubMed  CAS  Google Scholar 

  • Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  PubMed  CAS  Google Scholar 

  • Siddiq A, Ayoub IA, Chavez JC, Aminova L, Shah S, LaManna JC, Patton SM, Connor JR, Cherny RA, Volitakis I, Bush AI, Langsetmo I, Seeley T, Gunzler V, Ratan RR (2005) Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem 280:41732–41743

    Article  PubMed  CAS  Google Scholar 

  • Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 98:4044–4049

    Article  PubMed  CAS  Google Scholar 

  • Srinivas V, Zhang LP, Zhu XH, Caro J (1999) Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem Biophys Res Commun 260:557–561

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CE, Kaelin WG Jr, Pavletich NP (1999) Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461

    Article  PubMed  CAS  Google Scholar 

  • Stolze IP, Tian YM, Appelhoff RJ, Turley H, Wykoff CC, Gleadle JM, Ratcliffe PJ (2004) Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (FIH) in regulating hypoxia-inducible factor (HIF) transcriptional target genes. J Biol Chem 279:42719–42725

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci USA 98:15306–15311

    Article  PubMed  CAS  Google Scholar 

  • Sutter CH, Laughner E, Semenza GL (2000) Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 97:4748–4753

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Tomida A, Tsuruo T (2001) Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20:5779–5788

    Article  PubMed  CAS  Google Scholar 

  • Taylor MS (2001) Characterization and comparative analysis of the EGLN gene family. Gene 275:125–132

    Article  PubMed  CAS  Google Scholar 

  • Temes E, Martin-Puig S, Aragones J, Jones DR, Olmos G, Merida I, Landazuri MO (2004) Role of diacylglycerol induced by hypoxia in the regulation of HIF-1alpha activity. Biochem Biophys Res Commun 315:44–50

    Article  PubMed  CAS  Google Scholar 

  • Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    Article  PubMed  CAS  Google Scholar 

  • Trentin D, Hall H, Wechsler S, Hubbell JA (2006) Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proc Natl Acad Sci USA 103:2506–2511

    Article  PubMed  CAS  Google Scholar 

  • Valsecchi V, Pignataro G, PreteA D, Sirabella R, Matrone C, Boscia F, Scorziello A, Sisalli MJ, Esposito E, Zambrano N, Renzo GD, Annunziato L (2011) NCX1 Is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42:754–763

    Article  PubMed  CAS  Google Scholar 

  • Vangeison G, Carr D, Federoff HJ, Rempe DA (2008) The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 in neurons and astrocytes. J Neurosci 28:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Vertegaal AC, Ogg SC, Jaffray E, Rodriguez MS, Hay RT, Andersen JS, Mann M, Lamond AI (2004) A proteomic study of SUMO-2 target proteins. J Biol Chem 279:33791–33798

    Article  PubMed  CAS  Google Scholar 

  • Vincent KA, Shyu KG, Luo Y, Magner M, Tio RA, Jiang C, Goldberg MA, Akita GY, Gregory RJ, Isner JM (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1alpha/VP16 hybrid transcription factor. Circulation 102:2255–2261

    PubMed  CAS  Google Scholar 

  • Vulapalli SR, Chen Z, Chua BH, Wang T, Liang CS (2002) Cardioselective overexpression of HO-1 prevents I/R-induced cardiac dysfunction and apoptosis. Am J Physiol Heart Circ Physiol 283:688–694

    Google Scholar 

  • Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Wax SD, Rosenfield CL, Taubman MB (1994) Identification of a novel growth factor-responsive gene in vascular smooth muscle cells. J Biol Chem 269:13041–13047

    PubMed  CAS  Google Scholar 

  • Wellman TL, Jenkins J, Penar PL, Tranmer B, Zahr R, Lounsbury KM (2004) Nitric oxide and reactive oxygen species exert opposing effects on the stability of hypoxia-inducible factor-1alpha (HIF-1alpha) in explants of human pial arteries. FASEB J 18:379–381

    PubMed  CAS  Google Scholar 

  • Wenger RH (2002) Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 16:1151–1162

    Article  PubMed  CAS  Google Scholar 

  • Wiener CM, Booth G, Semenza GL (1996) In vivo expression of mRNAs encoding hypoxia-inducible factor. Biochem Biophys Res Commun 2:485–488

    Article  Google Scholar 

  • Wiesener MS, Jurgensen JS, Rosenberger C, Scholze CK, Horstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17:271–273

    PubMed  CAS  Google Scholar 

  • Yan J, Zhou B, Taheri S, Shi H (2011) Differential effects of HIF-1 Inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS ONE 6(11):27798

    Article  CAS  Google Scholar 

  • Yeh SH, Ou LC, Gean PW, Hung JJ, Chang WC (2011) Selective inhibition of early-but not late-expressed HIF-1α is neuroprotective in rats after focal ischemic brain damage. Brain Pathol 21(3):249–262

    Article  PubMed  CAS  Google Scholar 

  • Zaman K, Ryu H, Hall D, O’Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19:9821–9830

    PubMed  CAS  Google Scholar 

  • Zhang L, Qu Y, Yang C, Tang J, Zhang X, Mao M, Mu D, Ferriero D (2009) Signaling pathway involved in hypoxia-inducible factor-1alpha regulation in hypoxic-ischemic cortical neurons in vitro. Neurosci Lett 461:1–6

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Lia W, Lia L, Wanga N, Lia X, Gaoa M, Zhenga J, Leia S, Chenb X, Lub H, and Liub Y (2011) Treatment with edaravone attenuates ischemic brain injury and inhibits neurogenesis in the subventricular zone of adult rats after focal cerebral ischemia and reperfusion injury. Neuroscience doi:10.1016

  • Zhou J, Schmid T, Frank R, Brune B (2004) PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. J Biol Chem 279:13506–13513

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Matchett GA, Jadhav V, Dach N, Zhang JH (2008) The effect of 2-methoxyestradiol, a HIF-1 alpha inhibitor, in global cerebral ischemia in rats. Neurol Res 30:268–271

    Article  PubMed  CAS  Google Scholar 

  • Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Neetu Singh and Mr. Vikas Mishra received financial support from CSIR, New Delhi, and Mr.Gaurav Sharma was supported by MOES, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Raghubir.

Additional information

CDRI Communication Number-8187.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Sharma, G., Mishra, V. et al. Hypoxia Inducible Factor-1: Its Potential Role In Cerebral Ischemia. Cell Mol Neurobiol 32, 491–507 (2012). https://doi.org/10.1007/s10571-012-9803-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9803-9

Keywords

Navigation