Skip to main content

Advertisement

Log in

Role of Nitric Oxide on Motor Behavior

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The present review paper describes results indicating the influence of nitric oxide (NO) on motor control. Our last studies showed that systemic injections of low doses of inhibitors of NO synthase (NOS), the enzyme responsible for NO formation, induce anxiolytic effects in the elevated plus maze whereas higher doses decrease maze exploration. Also, NOS inhibitors decrease locomotion and rearing in an open field arena.

These results may involve motor effects of this compounds, since inhibitors of NOS, NG-nitro-L-arginine (L-NOARG), NG-nitro-L-arginine methylester (L-NAME), NG-monomethyl-L-arginine (L-NMMA), and 7-Nitroindazole (7-NIO), induced catalepsy in mice. This effect was also found in rats after systemic, intracebroventricular or intrastriatal administration.

Acute administration of L-NOARG has an additive cataleptic effect with haloperidol, a dopamine D2 antagonist. The catalepsy is also potentiated by WAY 100135 (5-HT1a receptor antagonist), ketanserin (5HT2a and alfa1 adrenergic receptor antagonist), and ritanserin (5-HT2a and 5HT2c receptor antagonist). Atropine sulfate and biperiden, antimuscarinic drugs, block L-NOARG-induced catalepsy in mice.

L-NOARG subchronic administration in mice induces rapid tolerance (3 days) to its cataleptic effects. It also produces cross-tolerance to haloperidol-induced catalepsy. After subchronic L-NOARG treatment there is an increase in the density NADPH-d positive neurons in the dorsal part of nucleus caudate-putamen, nucleus accumbens, and tegmental pedunculupontinus nucleus. In contrast, this treatment decreases NADPH-d neuronal number in the substantia nigra compacta.

Considering these results we suggest that (i) NO may modulate motor behavior, probably by interfering with dopaminergic, serotonergic, and cholinergic neurotransmission in the striatum; (ii) Subchronic NO synthesis inhibition induces plastic changes in NO-producing neurons in brain areas related to motor control and causes cross-tolerance to the cataleptic effect of haloperidol, raising the possibility that such treatments could decrease motor side effects associated with antipsychotic medications.

Finally, recent studies using experimental Parkinson’s disease models suggest an interaction between NO system and neurodegenerative processes in the nigrostriatal pathway. It provides evidence of a protective role of NO. Together, our results indicate that NO may be a key participant on physiological and pathophysiological processes in the nigrostriatal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abekawa, T., Ohmori, T., and Koyama, T. (1994). Effect of NO synthase inhibition on behavioral changes induced by a single administration of methamphetamine. Brain Res. 666:147–150.

    Article  CAS  PubMed  Google Scholar 

  • Agid, Y., Javoy-Agid, F., and Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. In Marsden, C. D., and Fahn, S. (eds.), Movement Disorders, Butterworths, London, pp. 166–230.

    Google Scholar 

  • Allikmets, L. H., Zarkovsky, A. M., and Nurk, A. M. (1981). Changes in catalepsy and receptor sensitivity following chronic neuroleptic treatment. Eur. J. Pharmacol. 75:145–147.

    CAS  PubMed  Google Scholar 

  • Amalric, M., Moukhles, H., Nieoullon, A., and Daszuta, A. (1995). Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat. Eur. J. Neurosci. 7:972–980.

    CAS  PubMed  Google Scholar 

  • Araki, T., Mizutani, H., Matsubara, M., Imai, Y., Mizugaki, M., and Itoyama, Y. (2001). Nitric oxide synthase inhibitors cause motor deficits in mice. Eur. Neuropsychopharmacol. 11:125–133.

    CAS  PubMed  Google Scholar 

  • Ariano, M. A. (1983). Distribution of components of the guanosine 3′,5′-phosphate system in rat caudate-putamen. Neuroscience 10:707–723.

    CAS  PubMed  Google Scholar 

  • Ariano, M. A., Lewicki, J. A., Brandwein, H. J., and Murad, F. (1982). Immunohistochemical localization of guanylate cyclase within neurons of rat brain. Proc. Natl. Acad. Sci. U.S.A 79:1316–1320.

    CAS  PubMed  Google Scholar 

  • Ariano, M. A., and Matus, A. I. (1981). Ultrastructural localization of cyclic GMP and cyclic AMP in rat striatum. J. Cell Biol. 91:287–292.

    CAS  PubMed  Google Scholar 

  • Babbedge, R. C., Hart, S. L., and Moore, P. K. (1993a). Anti-nociceptive activity of nitric oxide synthase inhibitors in the mouse: Dissociation between the effect of L-NAME and L-NMMA. J. Pharm. Pharmacol. 45:77–79.

    CAS  Google Scholar 

  • Babbedge, R. C., Wallace, P., Gaffen, Z. A., Hart, S. L., and Moore, P. K. (1993b). L-NG-nitro arginine p-nitroanilide (L-NAPNA) is anti-nociceptive in the mouse. Neuroreport 4:307–310.

    CAS  Google Scholar 

  • Barjavel, M. J., and Bhargava, H. N. (1995). Nitric oxide synthase activity in brain regions and spinal cord of mice and rats: Kinetic analysis. Pharmacology 50:168–174.

    CAS  PubMed  Google Scholar 

  • Barneoud, P., Parmentier, S., Mazadier, M., Miquet, J. M., Boireau, A., Dubedat, P., and Blanchard, J. C. (1995). Effects of complete and partial lesions of the dopaminergic mesotelencephalic system on skilled forelimb use in the rat. Neuroscience 67:837–848.

    CAS  PubMed  Google Scholar 

  • Black, M. D., Matthews, E. K., and Humphrey, P. P. (1994). The effects of a photosensitive nitric oxide donor on basal and electrically-stimulated dopamine efflux from the rat striatum in vitro. Neuropharmacology 33:1357–1365.

    CAS  PubMed  Google Scholar 

  • Bohme, G. A., Bon, C., Stutzmann, J. M., Doble, A., and Blanchard, J. C. (1991). Possible involvement of nitric oxide in long-term potentiation. Eur. J. Pharmacol. 199:379–381.

    CAS  PubMed  Google Scholar 

  • Bredt, D. S. (1999). Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radic. Res. 31:577–596.

    CAS  PubMed  Google Scholar 

  • Bredt, D. S., Hwang, P. M., and Snyder, S. H. (1990). Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Article  CAS  PubMed  Google Scholar 

  • Bredt, D. S., and Snyder, S. H. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A 87:682–685.

    CAS  PubMed  Google Scholar 

  • Bredt, D. S., and Snyder, S. H. (1992). Nitric oxide, a novel neuronal messenger. Neuron 8:3–11.

    Article  CAS  PubMed  Google Scholar 

  • Buisson, A., Margaill, I., Callebert, J., Plotkine, M., and Boulu, R. G. (1993). Mechanisms involved in the neuroprotective activity of a nitric oxide synthase inhibitor during focal cerebral ischemia. J. Neurochem. 61:690–696.

    CAS  PubMed  Google Scholar 

  • Calabresi, P., Pisani, A., Centonze, D., and Bernardi, G. (1997). Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neurosci. Biobehav. Rev. 21:519–523.

    CAS  PubMed  Google Scholar 

  • Carreau, A., Duval, D., Poignet, H., Scatton, B., Vige, X., and Nowicki, J. P. (1994). Neuroprotective efficacy of N omega-nitro-L-arginine after focal cerebral ischemia in the mouse and inhibition of cortical nitric oxide synthase. Eur. J. Pharmacol. 256:241–249.

    CAS  PubMed  Google Scholar 

  • Castagnoli, K., Palmer, S., and Castagnoli, N., Jr. (1999). Neuroprotection by (R)-deprenyl and 7-nitroindazole in the MPTP C57BL/6 mouse model of neurotoxicity. Neurobiology (Bp) 7:135–149.

    CAS  Google Scholar 

  • Caton, P. W., Tousman, S. A., and Quock, R. M. (1994). Involvement of nitric oxide in nitrous oxide anxiolysis in the elevated plus-maze. Pharmacol. Biochem. Behav. 48:689–692.

    CAS  PubMed  Google Scholar 

  • Cavas, M., and Navarro, J. F. (2002). Coadministration of L-NOARG and tiapride: Effects on catalepsy in male mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 26:69–73.

    CAS  PubMed  Google Scholar 

  • Cheramy, A., Leviel, V., and Glowinski, J. (1981). Dendritic release of dopamine in the substantia nigra. Nature 289:537–542.

    CAS  PubMed  Google Scholar 

  • Choi, D. W. (1993). Nitric oxide: Foe or friend to the injured brain? Proc. Natl. Acad. Sci. U.S.A. 90:9741–9743.

    CAS  PubMed  Google Scholar 

  • Clarke, K. A., and Still, J. (1999). Gait analysis in the mouse. Physiol. Behav. 66:723–729.

    CAS  PubMed  Google Scholar 

  • Coderre, T. J. (1993). The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol. Neurobiol. 7:229–246.

    CAS  PubMed  Google Scholar 

  • Cohen, G. (1987). Monoamine oxidase, hydrogen peroxide, and Parkinson’s disease. Adv. Neurol. 45:119–125.

    CAS  PubMed  Google Scholar 

  • Contestabile, A. (2000). Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res. Brain Res. Rev. 32:476–509.

    CAS  PubMed  Google Scholar 

  • Costall, B., Marsden, C. D., Naylor, R. J., and Pycock, C. J. (1976). The relationship between striatal and mesolimbic dopamine dysfunction and the nature of circling responses following 6-hydroxydopamine and electrolytic lesions of the ascending dopamine systems of rat brain. Brain Res. 118:87–113.

    CAS  PubMed  Google Scholar 

  • Costall, B., and Naylor, R. J. (1975). A comparison of circling models for the detection of antiparkinson activity. Psychopharmacologia 41:57–64.

    CAS  PubMed  Google Scholar 

  • Dall’Igna, O. P., Dietrich, M. O., Hoffmann, A., Neto, W., Vendite, D., Souza, D. O., and Lara, D. R. (2001). Catalepsy and hypolocomotion induced by a nitric oxide donor: Attenuation by theophylline. Eur. J. Pharmacol. 432:29–33.

    CAS  PubMed  Google Scholar 

  • Danysz, W., Gossel, M., Zajaczkowski, W., Dill, D., and Quack, G. (1994). Are NMDA antagonistic properties relevant for antiparkinsonian-like activity in rats?—Case of amantadine and memantine. J. Neural Transm. Park Dis. Dement. Sect. 7:155–166.

    CAS  PubMed  Google Scholar 

  • Dawson, T. M., Bredt, D. S., Fotuhi, M., Hwang, P. M., and Snyder, S. H. (1991). Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 88:7797–7801.

    CAS  PubMed  Google Scholar 

  • de Medinaceli, L., Freed, W. J., and Wyatt, R. J. (1982). An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp. Neurol. 77:634–643.

    CAS  PubMed  Google Scholar 

  • De Oliveira, C. L., Del Bel, E. A., and Guimaraes, F. S. (1997a). Effects of L-NOARG on plus-maze performance in rats. Pharmacol. Biochem. Behav. 56:55–59.

    CAS  Google Scholar 

  • De Oliveira, C. L., Del Bel, E. A., and Guimaraes, F. S. (1997b). Effects of L-NOARG on plus-maze performance in rats. Pharmacol. Biochem. Behav. 56:55–59.

    CAS  Google Scholar 

  • De Oliveira, R. M., Del Bel, E. A., and Guimaraes, F. S. (2001). Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the dorsolateral periaqueductal gray. Neurosci. Biobehav. Rev. 25:679–685.

    CAS  PubMed  Google Scholar 

  • Del Bel, E. A., da Silva, C. A., and Guimaraes, F. S. (1998). Catalepsy induced by nitric oxide synthase inhibitors. Gen. Pharmacol. 30:245–248.

    CAS  PubMed  Google Scholar 

  • Del Bel, E. A., da Silva, C. A., Guimaraes, F. S., and Bermudez-Echeverry, M. (2004). Catalepsy induced by intra-striatal administration of nitric oxide synthase inhibitors in rats. Eur. J. Pharmacol. 485:175–181.

    CAS  PubMed  Google Scholar 

  • Del Bel, E. A., and Guimaraes, F. S. (2000). Sub-chronic inhibition of nitric-oxide synthesis modifies haloperidol-induced catalepsy and the number of NADPH-diaphorase neurons in mice. Psychopharmacology (Berl) 147:356–361.

    CAS  Google Scholar 

  • Del Bel, E. A., Oliveira, P. R., Oliveira, J. A., Mishra, P. K., Jobe, P. C., and Garcia-Cairasco, N. (1997). Anticonvulsant and proconvulsant roles of nitric oxide in experimental epilepsy models. Braz. J. Med. Biol. Res. 30:971–979.

    CAS  PubMed  Google Scholar 

  • Del Bel, E. A., Souza, A. S., Guimaraes, F. S., da Silva, C. A., and Nucci-da-Silva, L. P. (2002). Motor effects of acute and chronic inhibition of nitric oxide synthesis in mice. Psychopharmacology (Berl) 161:32–37.

    CAS  Google Scholar 

  • Deumens, R., Blokland, A., and Prickaerts, J. (2002). Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175:303–317.

    CAS  PubMed  Google Scholar 

  • Dwyer, M. A., Bredt, D. S., and Snyder, S. H. (1991). Nitric oxide synthase: Irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo. Biochem. Biophys. Res. Commun. 176:1136–1141.

    CAS  PubMed  Google Scholar 

  • Dzoljic, E., De Vries, R., and Dzoljic, M. R. (1997). New and potent inhibitors of nitric oxide synthase reduce motor activity in mice. Behav. Brain Res. 87:209–212.

    CAS  PubMed  Google Scholar 

  • Elliott, P. J., Close, S. P., Walsh, D. M., Hayes, A. G., and Marriott, A. S. (1990). Neuroleptic-induced catalepsy as a model of Parkinson’s disease. I. Effect of dopaminergic agents. J. Neural Transm. Park Dis. Dement. Sect. 2:79–89.

    PubMed  Google Scholar 

  • Esplugues, J. V. (2002). NO as a signalling molecule in the nervous system. Br. J. Pharmacol. 135:1079–1095.

    CAS  PubMed  Google Scholar 

  • Eve, D. J., Nisbet, A. P., Kingsbury, A. E., Hewson, E. L., Daniel, S. E., Lees, A. J., Marsden, C. D., and Foster, O. J. (1998). Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res. Mol. Brain Res. 63:62–71.

    CAS  PubMed  Google Scholar 

  • Ezrin-Waters, C., and Seeman, P. (1977). Tolerance of haloperidol catalepsy. Eur. J. Pharmacol. 41:321–327.

    CAS  PubMed  Google Scholar 

  • Fahn, S. (1988). Parkinsonism. In Wyngaarden, J. B., and Smith, L. H., Jr. (eds.), Cecil’s Textbook of medicine, Saunders, Philadelphia, pp. 2143–2147.

    Google Scholar 

  • Faria, M. S., Muscara, M. N., Moreno, J. H., Teixeira, S. A., Dias, H. B., De Oliveira, B., Graeff, F. G., and De Nucci, G. (1997). Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test. Eur. J. Pharmacol. 323:37–43.

    CAS  PubMed  Google Scholar 

  • Forstermann, U., Schmidt, H. H., Pollock, J. S., Sheng, H., Mitchell, J. A., Warner, T. D., Nakane, M., and Murad, F. (1991). Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem. Pharmacol. 42:1849–1857.

    CAS  PubMed  Google Scholar 

  • Garthwaite, J. (1991). Glutamate, nitric oxide and cell–cell signalling in the nervous system. Trends Neurosci. 14:60–67.

    CAS  PubMed  Google Scholar 

  • Gerlach, M., and Riederer, P. (1996). Animal models of Parkinson’s disease: An empirical comparison with the phenomenology of the disease in man. J. Neural Trans. 103:987–1041.

    CAS  Google Scholar 

  • Goldberger, M. E., Bregman, B. S., Vierck, C. J., Jr., and Brown, M. (1990). Criteria for assessing recovery of function after spinal cord injury: Behavioral methods. Exp. Neurol. 107:113–117.

    CAS  PubMed  Google Scholar 

  • Gomes, M. Z., and Del Bel, E. A. (2003). Effects of electrolytic and 6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase. Brain Res. Bull. 62:107–115.

    CAS  PubMed  Google Scholar 

  • Graeff, F. G. (1990). Brain defense system and anxiety. In Burrows, G. D., Roth, M., and Noyes, R. (eds.), Handbook of Anxiety, Elsevier Science, Amsterdam, pp. 307–354.

    Google Scholar 

  • Graveland, G. A., Williams, R. S., and DiFiglia, M. (1985). Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227:770–773.

    CAS  PubMed  Google Scholar 

  • Graybiel, A. M. (1990). Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 13:244–254.

    CAS  PubMed  Google Scholar 

  • Graybiel, A. M., Besson, M. J., and Weber, E. (1989). Neuroleptic-sensitive binding sites in the nigrostriatal system: Evidence for differential distribution of sigma sites in the substantia nigra, pars compacta of the cat. J. Neurosci. 9:326–338.

    CAS  PubMed  Google Scholar 

  • Greenberg, J. H., Hamada, J., and Rysman, K. (1997). Distribution of N(omega)-nitro-L-arginine following topical and intracerebroventricular administration in the rat. Neurosci. Lett. 229:1–4.

    CAS  PubMed  Google Scholar 

  • Guevara-Guzman, R., Emson, P. C., and Kendrick, K. M. (1994). Modulation of in vivo striatal transmitter release by nitric oxide and cyclic GMP. J. Neurochem. 62:807–810.

    CAS  PubMed  Google Scholar 

  • Guimaraes, F. S., de Aguiar, J. C., Del Bel, E. A., and Ballejo, G. (1994). Anxiolytic effect of nitric oxide synthase inhibitors microinjected into the dorsal central grey. Neuroreport 5:1929–1932.

    CAS  PubMed  Google Scholar 

  • Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R. T., and Beal, M. F. (1996). Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat. Med. 2:1017–1021.

    CAS  PubMed  Google Scholar 

  • Hauber, W. (1998). Involvement of basal ganglia transmitter systems in movement initiation. Prog. Neurobiol. 56:507–540.

    CAS  PubMed  Google Scholar 

  • Hecker, M., Mitchell, J. A., Harris, H. J., Katsura, M., Thiemermann, C., and Vane, J. R. (1990). Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem. Biophys. Res. Commun. 167:1037–1043.

    CAS  PubMed  Google Scholar 

  • Hirsch, E. C., Graybiel, A. M., Duyckaerts, C., and Javoy-Agid, F. (1987). Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc. Natl. Acad. Sci. U.S.A. 84:5976–5980.

    CAS  PubMed  Google Scholar 

  • Hope, B. T., Michael, G. J., Knigge, K. M., and Vincent, S. R. (1991). Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A 88:2811–2814.

    CAS  PubMed  Google Scholar 

  • Hoyt, K. R., Tang, L. H., Aizenman, E., and Reynolds, I. J. (1992). Nitric oxide modulates NMDA-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Brain Res. 592:310–316.

    CAS  PubMed  Google Scholar 

  • Hughes, R. N. (1993). Effects on open-field behavior of diazepam and buspirone alone and in combination with chronic caffeine. Life Sci. 53:1217–1225.

    CAS  PubMed  Google Scholar 

  • Hunot, S., Boissiere, F., Faucheux, B., Brugg, B., Mouatt-Prigent, A., Agid, Y., and Hirsch, E. C. (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 72:355–363.

    CAS  PubMed  Google Scholar 

  • Iadecola, C., Xu, X., Zhang, F., Hu, J., and el Fakahany, E. E. (1994). Prolonged inhibition of brain nitric oxide synthase by short-term systemic administration of nitro-L-arginine methyl ester. Neurochem. Res. 19:501–505.

    CAS  PubMed  Google Scholar 

  • Inglis, W. L., and Winn, P. (1995). The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation. Prog. Neurobiol. 47:1–29.

    CAS  PubMed  Google Scholar 

  • Iravani, M. M., Millar, J., and Kruk, Z. L. (1998). Differential release of dopamine by nitric oxide in subregions of rat caudate putamen slices. J. Neurochem. 71:1969–1977.

    CAS  PubMed  Google Scholar 

  • Iversen, S. D., Howells, R. B., and Hughes, R. P. (1980). Behavioral consequences of long-term treatment with neuroleptic drugs. Adv. Biochem. Psychopharmacol. 24:305–313.

    CAS  PubMed  Google Scholar 

  • Iwamoto, E. T., Loh, H. H., and Way, E. L. (1976). Circling behavior in rats with 6-hydroxydopamine or electrolytic nigral lesions. Eur. J. Pharmacol. 37:339–356.

    CAS  PubMed  Google Scholar 

  • Johnsson, G. (1983). Chemical lesioning techniques:monoamine neurotoxins. In Bjorklund, A., and Hokfelt, T. (eds.), Handbook of Chemical Neuroanatomy, Sciences Publishers, Amsterdam, pp. 463–507.

    Google Scholar 

  • Johnston, H. M., and Morris, B. J. (1994). NMDA and nitric oxide increase microtubule-associated protein 2 gene expression in hippocampal granule cells. J. Neurochem. 63:379–382.

    CAS  PubMed  Google Scholar 

  • Kawaguchi, Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13:4908–4923.

    CAS  PubMed  Google Scholar 

  • Keifer, J., and Kalil, K. (1991). Effects of infant versus adult pyramidal tract lesions on locomotor behavior in hamsters. Exp. Neurol. 111:98–105.

    CAS  PubMed  Google Scholar 

  • Kiss, J. P., and Vizi, E. S. (2001). Nitric oxide: A novel link between synaptic and nonsynaptic transmission. Trends Neurosci. 24:211–215.

    CAS  PubMed  Google Scholar 

  • Klatt, P., Heinzel, B., John, M., Kastner, M., Bohme, E., and Mayer, B. (1992). Ca2+/calmodulin-dependent cytochrome c reductase activity of brain nitric oxide synthase. J. Biol. Chem. 267:11374–11378.

    CAS  PubMed  Google Scholar 

  • Klemm, W. R. (1983). Cholinergic-dopaminergic interactions in experimental catalepsy. Psychopharmacology (Berl) 81:24–27.

    CAS  Google Scholar 

  • Klemm, W. R. (1985). Evidence for a cholinergic role in haloperidol-induced catalepsy. Psychopharmacology (Berl) 85:139–142.

    CAS  Google Scholar 

  • Koffer, K. B., Berney, S., and Hornykiewicz, O. (1978). The role of the corpus striatum in neuroleptic- and narcotic-induced catalepsy. Eur. J. Pharmacol. 47:81–86.

    CAS  PubMed  Google Scholar 

  • Kolesnikov, Y. A., Pick, C. G., and Pasternak, G. W. (1992). NG-nitro-L-arginine prevents morphine tolerance. Eur. J. Pharmacol. 221:399–400.

    CAS  PubMed  Google Scholar 

  • Koob, G. F., Simon, H., Herman, J. P., and Le Moal, M. (1984). Neuroleptic-like disruption of the conditioned avoidance response requires destruction of both the mesolimbic and nigrostriatal dopamine systems. Brain Res. 303:319–329.

    CAS  PubMed  Google Scholar 

  • Korf, J., and Sebens, J. B. (1987). Relationship between dopamine receptor occupation by spiperone and acetylcholine levels in the rat striatum after long-term haloperidol treatment depends on dopamine innervation. J. Neurochem. 48:516–521.

    CAS  PubMed  Google Scholar 

  • Kriegsfeld, L. J., Eliasson, M. J., Demas, G. E., Blackshaw, S., Dawson, T. M., Nelson, R. J., and Snyder, S. H. (1999). Nocturnal motor coordination deficits in neuronal nitric oxide synthase knock-out mice. Neuroscience 89:311–315.

    CAS  PubMed  Google Scholar 

  • Kulig, B. M., Vanwersch, R. A., and Wolthuis, O. L. (1985). The automated analysis of coordinated hindlimb movement in rats during acute and prolonged exposure to toxic agents. Toxicol. Appl. Pharmacol. 80:1–10.

    CAS  PubMed  Google Scholar 

  • Kunkel-Bagden, E., Dai, H. N., and Bregman, B. S. (1993). Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp. Neurol. 119:153–164.

    CAS  PubMed  Google Scholar 

  • Lavoie, B., and Parent, A. (1994). Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J. Comp Neurol. 344:210–231.

    CAS  PubMed  Google Scholar 

  • Linden, D. J., and Connor, J. A. (1992). Long-term depression of glutamate currents in cultured cerebellar Purkinje neurons does not require nitric oxide signalling. Eur. J. Neurosci. 4:10–15.

    PubMed  Google Scholar 

  • Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. (1993). A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.

    CAS  PubMed  Google Scholar 

  • Manzoni, O., Prezeau, L., Marin, P., Deshager, S., Bockaert, J., and Fagni, L. (1992). Nitric oxide-induced blockade of NMDA receptors. Neuron 8:653–662.

    CAS  PubMed  Google Scholar 

  • Marras, R. A., Martins, A. P., Del Bel, E. A., and Guimaraes, F. S. (1995). L-NOARG, an inhibitor of nitric oxide synthase, induces catalepsy in mice. Neuroreport 7:158–160.

    CAS  PubMed  Google Scholar 

  • Meffert, M. K., Premack, B. A., and Schulman, H. (1994). Nitric oxide stimulates Ca(2+)-independent synaptic vesicle release. Neuron 12:1235–1244.

    CAS  PubMed  Google Scholar 

  • Mitchell, I. J., Clarke, C. E., Boyce, S., Robertson, R. G., Peggs, D., Sambrook, M. A., and Crossman, A. R. (1989). Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neuroscience 32:213–226.

    CAS  PubMed  Google Scholar 

  • Mollace, V., Bagetta, G., and Nistico, G. (1991). Evidence that L-arginine possesses proconvulsant effects mediated through nitric oxide. Neuroreport 2:269–272.

    CAS  PubMed  Google Scholar 

  • Moore, N. A., Blackman, A., Awere, S., and Leander, J. D. (1993). NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists. Eur. J. Pharmacol. 237:1–7.

    CAS  PubMed  Google Scholar 

  • Morris, B. J., Hollt, V., and Herz, A. (1988). Dopaminergic regulation of striatal proenkephalin mRNA and prodynorphin mRNA: Contrasting effects of D1 and D2 antagonists. Neuroscience 25:525–532.

    CAS  PubMed  Google Scholar 

  • Morris, B. J., Simpson, C. S., Mundell, S., Maceachern, K., Johnston, H. M., and Nolan, A. M. (1997). Dynamic changes in NADPH-diaphorase staining reflect activity of nitric oxide synthase: Evidence for a dopaminergic regulation of striatal nitric oxide release. Neuropharmacology 36:1589–1599.

    CAS  PubMed  Google Scholar 

  • Mufson, E. J., and Brandabur, M. M. (1994). Sparing of NADPH-diaphorase striatal neurons in Parkinson’s and Alzheimer’s diseases. Neuroreport 5:705–708.

    CAS  PubMed  Google Scholar 

  • Navarro, J. F., Vera, F., Manzaneque, J. M., Martín-López, M., Santiín, L. J., and Pedraza, C. (1997). Tolerance to the cataleptic effect of L-NOARG after subchronic administration in female mice. Med. Sci. Res. 25:625–626.

    CAS  Google Scholar 

  • Ninan, I., and Kulkarni, S. K. (1999). Quinpirole, 8-OH-DPAT and ketanserin modulate catalepsy induced by high doses of atypical antipsychotics. Methods Find. Exp. Clin. Pharmacol. 21:603–608.

    CAS  PubMed  Google Scholar 

  • Noda, Y., Yamada, K., Furukawa, H., and Nabeshima, T. (1995). Involvement of nitric oxide in phencyclidine-induced hyperlocomotion in mice. Eur. J. Pharmacol. 286:291–297.

    CAS  PubMed  Google Scholar 

  • Nucci-da-Silva, L. P., Guimaraes, F. S., and Del Bel, E. A. (1999). Serotonin modulation of catalepsy induced by N(G)-nitro-L-arginine in mice. Eur. J. Pharmacol. 379:47–52.

    CAS  PubMed  Google Scholar 

  • O’Dell, T. J., Hawkins, R. D., Kandel, E. R., and Arancio, O. (1991). Tests of the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger. Proc. Natl. Acad. Sci. U.S.A. 88:11285–11289.

    CAS  PubMed  Google Scholar 

  • Oka, M., Yamada, K., Kamei, C., Yoshida, K., and Shimizu, M. (1979). Differential antagonism of antiavoidance, cataleptic and ptotic effects of neuroleptics by biperiden. Jpn. J. Pharmacol. 29:435–445.

    CAS  PubMed  Google Scholar 

  • Onstott, D., Mayer, B., and Beitz, A. J. (1993). Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: Analysis using laser confocal microscopy. Brain Res. 610:317–324.

    CAS  PubMed  Google Scholar 

  • Osborne, P. G., O’Connor, W. T., Beck, O., and Ungerstedt, U. (1994). Acute versus chronic haloperidol: Relationship between tolerance to catalepsy and striatal and accumbens dopamine, GABA and acetylcholine release. Brain Res. 634:20–30.

    CAS  PubMed  Google Scholar 

  • Papa, S. M., Engber, T. M., Boldry, R. C., and Chase, T. N. (1993). Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. Eur. J. Pharmacol. 232:247–253.

    CAS  PubMed  Google Scholar 

  • Ponzoni, S., Guimaraes, F. S., Del Bel, E. A., and Garcia-Cairasco, N. (2000). Behavioral effects of intra-nigral microinjections of manganese chloride: Interaction with nitric oxide. Prog .Neuropsychopharmacol. Biol. Psychiatry 24:307–325.

    CAS  PubMed  Google Scholar 

  • Prinssen, E. P., Colpaert, F. C., and Koek, W. (2002). 5-HT1A receptor activation and anti-cataleptic effects: High-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur. J. Pharmacol. 453:217–221.

    CAS  PubMed  Google Scholar 

  • Pycock, C., Dawbarn, D., and O’Shaughnessy, C. (1982). Behavioural and biochemical changes following chronic administration of L-dopa to rats. Eur. J. Pharmacol. 79:201–215.

    CAS  PubMed  Google Scholar 

  • Pycock, C. J. (1980). Turning behaviour in animals. Neuroscience 5:461–514.

    CAS  PubMed  Google Scholar 

  • Quock, R. M., and Nguyen, E. (1992). Possible involvement of nitric oxide in chlordiazepoxide-induced anxiolysis in mice. Life Sci. 51:L255–L260.

    Google Scholar 

  • Rosa, W. C., Oliveira, G. M., and Nakamura-Palacios, E. M. (1994). Effects of the antihypertensive drugs alpha-methyldopa and hydralazine on the performance of spontaneously hypertensive rats in the elevated plus-maze. Braz. J. Med. Biol. Res. 27:55–59.

    CAS  PubMed  Google Scholar 

  • Royland, J. E., Delfani, K., Langston, J. W., Janson, A. M., and Di Monte, D. A. (1999). 7-Nitroindazole prevents 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced ATP loss in the mouse striatum. Brain Res. 839:41–48.

    CAS  PubMed  Google Scholar 

  • Salter, M., Duffy, C., and Hazelwood, R. (1995). Determination of brain nitric oxide synthase inhibition in vivo: Ex vivo assays of nitric oxide synthase can give incorrect results. Neuropharmacology 34:327–334.

    CAS  PubMed  Google Scholar 

  • Sanberg, P. R., Bunsey, M. D., Giordano, M., and Norman, A. B. (1988). The catalepsy test: Its ups and downs. Behav. Neurosci. 102:748–759.

    CAS  PubMed  Google Scholar 

  • Sanberg, P. R., Pevsner, J., and Coyle, J. T. (1984). Parametric influences on catalepsy. Psychopharmacology (Berl) 82:406–408.

    CAS  Google Scholar 

  • Sanberg, P. R., Pisa, M., Faulks, I. J., and Fibiger, H. C. (1980). Experimental influences on catalepsy. Psychopharmacology (Berl) 69:225–226.

    CAS  Google Scholar 

  • Sandi, C., Venero, C., and Guaza, C. (1995). Decreased spontaneous motor activity and startle response in nitric oxide synthase inhibitor-treated rats. Eur. J. Pharmacol. 277:89–97.

    CAS  PubMed  Google Scholar 

  • Sandor, N. T., Brassai, A., Puskas, A., and Lendvai, B. (1995). Role of nitric oxide in modulating neurotransmitter release from rat striatum. Brain Res. Bull. 36:483–486.

    CAS  PubMed  Google Scholar 

  • Saner, A., and Thoenen, H. (1971). Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol. Pharmacol. 7:147–154.

    CAS  PubMed  Google Scholar 

  • Sardo, P., Ferraro, G., Di Giovanni, G., Galati, S., and La, G. V. (2002). Inhibition of nitric oxide synthase influences the activity of striatal neurons in the rat. Neurosci. Lett. 325:179–182.

    CAS  PubMed  Google Scholar 

  • Schmidt, H. H., Gagne, G. D., Nakane, M., Pollock, J. S., Miller, M. F., and Murad, F. (1992). Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction. J. Histochem. Cytochem. 40:1439–1456.

    CAS  PubMed  Google Scholar 

  • Shibuki, K., and Okada, D. (1991). Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 349:326–328.

    CAS  PubMed  Google Scholar 

  • Silva, M. T., Rose, S., Hindmarsh, J. G., Aislaitner, G., Gorrod, J. W., Moore, P. K., Jenner, P., and Marsden, C. D. (1995). Increased striatal dopamine efflux in vivo following inhibition of cerebral nitric oxide synthase by the novel monosodium salt of 7-nitro indazole. Br. J. Pharmacol. 114:257–258.

    CAS  PubMed  Google Scholar 

  • Silva, M. T., Rose, S., Hindmarsh, J. G., and Jenner, P. (2003). Inhibition of neuronal nitric oxide synthase increases dopamine efflux from rat striatum. J. Neural Transm. 110:353–362.

    CAS  PubMed  Google Scholar 

  • Sistiaga, A., Miras-Portugal, M. T., and Sanchez-Prieto, J. (1997). Modulation of glutamate release by a nitric oxide/cyclic GMP-dependent pathway. Eur. J. Pharmacol. 321:247–257.

    CAS  PubMed  Google Scholar 

  • Starr, M. S., and Starr, B. S. (1995). Do NMDA receptor-mediated changes in motor behaviour involve nitric oxide? Eur. J. Pharmacol. 272:211–217.

    CAS  PubMed  Google Scholar 

  • Stewart, T. L., Michel, A. D., Black, M. D., and Humphrey, P. P. (1996). Evidence that nitric oxide causes calcium-independent release of [3H] dopamine from rat striatum in vitro. J. Neurochem. 66:131–137.

    CAS  PubMed  Google Scholar 

  • Sugaya, K., and McKinney, M. (1994). Nitric oxide synthase gene expression in cholinergic neurons in the rat brain examined by combined immunocytochemistry and in situ hybridization histochemistry. Brain Res. Mol. Brain Res. 23:111–125.

    CAS  PubMed  Google Scholar 

  • Traystman, R. J., Moore, L. E., Helfaer, M. A., Davis, S., Banasiak, K., Williams, M., and Hurn, P. D. (1995). Nitro-L-arginine analogues. Dose- and time-related nitric oxide synthase inhibition in brain. Stroke 26:864–869.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5:107–110.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1971a). Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand. Suppl 367:69–93.

    CAS  Google Scholar 

  • Ungerstedt, U. (1971b). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand. Suppl 367:49–68.

    CAS  Google Scholar 

  • Ushijima, I., Kawano, M., Kaneyuki, H., Suetsugi, M., Usami, K., Hirano, H., Mizuki, Y., and Yamada, M. (1997). Dopaminergic and cholinergic interaction in cataleptic responses in mice. Pharmacol. Biochem. Behav. 58:103–108.

    CAS  PubMed  Google Scholar 

  • Uzbay, I. T. (2001). L-NAME precipitates catatonia during ethanol withdrawal in rats. Behav. Brain Res. 119:71–76.

    CAS  PubMed  Google Scholar 

  • Vale, A. L., Green, S., Montgomery, A. M., and Shafi, S. (1998). The nitric oxide synthesis inhibitor L-NAME produces anxiogenic-like effects in the rat elevated plus-maze test, but not in the social interaction test. J. Psychopharmacol. 12:268–272.

    CAS  PubMed  Google Scholar 

  • Vincent, S. R., and Kimura, H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784.

    Article  CAS  PubMed  Google Scholar 

  • Volke, V., Koks, S., Vasar, E., Bourin, M., Bradwejn, J., and Mannisto, P. T. (1995). Inhibition of nitric oxide synthase causes anxiolytic-like behaviour in an elevated plus-maze. Neuroreport 6:1413–1416.

    CAS  PubMed  Google Scholar 

  • West, A. R., and Galloway, M. P. (1998). Nitric oxide and potassium chloride-facilitated striatal dopamine efflux in vivo: Role of calcium-dependent release mechanisms. Neurochem. Int. 33:493–501.

    CAS  PubMed  Google Scholar 

  • West, A. R., Galloway, M. P., and Grace, A. A. (2002). Regulation of striatal dopamine neurotransmission by nitric oxide: Effector pathways and Signaling mechanisms. Synapse 44:227–245.

    CAS  PubMed  Google Scholar 

  • Wichmann, T., and DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 6:751–758.

    CAS  PubMed  Google Scholar 

  • Yildiz, F., Ulak, G., Erden, B. F., and Gacar, N. (2000). Anxiolytic-like effects of 7-nitroindazole in the rat plus-maze test. Pharmacol. Biochem. Behav. 65:199–202.

    CAS  PubMed  Google Scholar 

  • Yoshida, Y., Ono, T., Kawano, K., and Miyagishi, T. (1994). Distinct sites of dopaminergic and glutamatergic regulation of haloperidol-induced catalepsy within the rat caudate-putamen. Brain Res. 639:139–148.

    CAS  PubMed  Google Scholar 

  • Zarrindast, M. R., Modabber, M., and Sabetkasai, M. (1993). Influences of different adenosine receptor subtypes on catalepsy in mice. Psychopharmacology (Berl) 113:257–261.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Del Bel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bel, E.A.D., Guimarães, F.S., Bermũdez-Echeverry, M. et al. Role of Nitric Oxide on Motor Behavior. Cell Mol Neurobiol 25, 371–392 (2005). https://doi.org/10.1007/s10571-005-3065-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-005-3065-8

Keywords

Navigation