Skip to main content
Log in

Effects of NMDA-Receptor Antagonist Treatment on c-fos Expression in Rat Brain Areas Implicated in Schizophrenia

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas.

2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia.

3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization.

4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons.

5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression.

6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreasen, N. C. (1999). A unitary model of schizophrenia---Bleuler’s ‘‘fragmented phrene’’ as schizencephaly. Arch. Gen. Psychiatry 56781–787.

    PubMed  CAS  Google Scholar 

  • Braff, D. L. (1999). Connecting the ‘‘dots’’ of brain dysfunction in schizophrenia. Arch. Gen. Psychiatry 56791–793.

    PubMed  CAS  Google Scholar 

  • Castrén, E., Berzaghi, M. P., Lindholm, D., and Thoenen, H. (1993). Differential effects of MK-801 on the brain-derived neurotrophic factor mRNA levels in different regions of rat brain. Exp. Neurol. 122244–252.

    PubMed  Google Scholar 

  • DeLeonibus, E., Mele, A., Oliverio, A., and Pert, A. (2002). Distinct pattern of c-fos mRNA expression after systematic and intra-accumbens amphetamine and MK-801. Neuroscienc 11567–78.

    CAS  Google Scholar 

  • Dragunow, M., and Faull, R. L. M. (1990). MK-801 induces c-fos protein in thalamic and neocortical neurons of rat brain. Neurosci. Lett. 113144–150.

    PubMed  CAS  Google Scholar 

  • Farber, N. B., Wozniak, D. F., Price, M. T., Labruyere, J., Huss, J., St. Peter, H., and Olney, J. W. (1995). Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: Potential relevance to schizophrenia? Biol Psychiatry 38788–796.

    PubMed  CAS  Google Scholar 

  • Farber, N. F., Price, M. T., Labruyere, J., Nemnich, J., St. Peter, H., Wozniak, D. F., and Olney, J. W. (1993). Antipsychotic drugs block phencyclidine receptor-mediated neurotoxicity. Biol. Psychiatry 34119–121.

    PubMed  CAS  Google Scholar 

  • Gass, P., Herdegen, T., Bravos, R., and Kiessling, M. (1993). Induction and suppression of immediate early genes in specific rat brain regions by the non-competitive N-methyl-D-aspartate receptor antagonist MK-801. Neuroscienc 53749–758.

    PubMed  CAS  Google Scholar 

  • Gogos, J. A., and Karayiorgou, M. (2001). ‘‘Targeting’’ schizophrenia in mice. Am. J. Med. Genet. 10550–52.

    PubMed  CAS  Google Scholar 

  • Hughes, P., and Dragunow, M. (1995). Induction of immediate early genes and the control of neurotransmitter-regulated gene-expression within the nervous system. Pharmacol. Rev. 47134–178.

    Google Scholar 

  • Ihalainen, J. A., and Tanila, H. (2002). In vivoregulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse prefrontal cortex. Eur. J. Neurosci. 151789–1794.

    PubMed  Google Scholar 

  • Javitt, D. C., and Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 1481301–1308.

    PubMed  CAS  Google Scholar 

  • Kashiwa, A., Nishikawa, T., Nishijima, K., Umino, A., and Takahashi, K. (1995). Dizocilpine (MK-801) elicits a tetrodotoxin-sensitive increase in extracellular release of dopamine in rat medial frontal cortex. Neurochem. Int. 26269–279.

    PubMed  CAS  Google Scholar 

  • Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., Heninger, G. R., Bowers, M. B., and Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51199–214.

    PubMed  CAS  Google Scholar 

  • Kurachi, M. (2003a). Pathogenesis of schizophrenia: Part 1. Symptomology, cognitive characteristics and brain morphology. Psychiatry Clin. Neurosci. 573–8.

    Google Scholar 

  • Kurachi, M. (2003b). Pathogenesis of schizophrenia: Part II. Temporo-frontal two step hypothesis. Psychiatry Clin. Neurosci. 579–15.

    Google Scholar 

  • Lahti, A. C., Koffel, B., LaPorte, D., and Tamminga, C. (1995). Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacolog 139–19.

    PubMed  CAS  Google Scholar 

  • Lee, S., Rivier, C., and Torres, G. (1994). Induction of c-fos and CRF mRNA by MK801 in the parvocellular paraventricular nucleus of the rat hypothalamus. Mol. Brain Res. 24192–198.

    PubMed  CAS  Google Scholar 

  • Morgan, J. I., and Curran, T. (1991). Stimulus-transcription coupling in the nervous system: Involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci. 14421–451.

    PubMed  CAS  Google Scholar 

  • Näkki, R., Sharp, F. R., and Sagar, S. M. (1996). Fos expression in the brainstem and cerebellum following phencyclidine and MK-801. J. Neurosci. Res. 43203–212.

    PubMed  Google Scholar 

  • Olney, J. W., Labruyere, J., and Price, M. T. (1989). Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Scienc 2441360–1362.

    PubMed  CAS  Google Scholar 

  • Paxinos, G., and Watson, C. (1986). The Rat Brain in Stereotaxic Coordinates, Academic Press, Sydney.

  • Riedel, G., Platt, B., and Micheau, J. (2003). Glutamate receptor function in learning and memory. Behav. Brain Res. 1401–47.

    PubMed  CAS  Google Scholar 

  • Rose, J. E., and Woolsey, C. N. (1948). The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res. Publ. Ass. Nerv. Ment. Dis. 27210–232.

    Google Scholar 

  • Schmidt, C. J., Fadayel, G. M. (1996). Regional effects of MK-801 on dopamine release: Effects of competitive NMDA or 5-HT2A receptor blockade. J. Pharmacol. Exp. Ther. 2771541–1549.

    PubMed  CAS  Google Scholar 

  • Sharp, F. R., Jasper, P., Hall, J., Noble, L., and Sagar, S. M. (1991). MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex. Ann. Neurol. 30801–809.

    PubMed  CAS  Google Scholar 

  • Sharp, F. R., Tomitaka, M., Bernaudin, M., and Tomitaka, S. (2001). Psychosis: Pathological activation of limbic thalamocortical circuits by psychotomimetics and schizophrenia? Trends Neurosci. 24330–334.

    PubMed  CAS  Google Scholar 

  • Taffe, M. A., Davis, S. A., Gutierrez, T., and Gold, L. H. (2002). Ketamine impairs multiple cognitive domains in rhesus monkey. Drug Alcohol Depend. 68175–187.

    PubMed  CAS  Google Scholar 

  • Tekin, S., and Cummings, J. L. (2002). Frontal-subcortical circuits and clinical neuropsychiatry–-An update. J. Psychosom. Res. 53647–654.

    PubMed  Google Scholar 

  • Thaker, G. K., and Carpenter, W. T., Jr. (2001). Advances in schizophrenia. Nat. Med. 7667–671.

    PubMed  CAS  Google Scholar 

  • Tomitaka, S., Tomitaka, M., Tolliver, B. K., and Sharp, F. R. (2000). Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK801) injures pyramidal neurons in rat retrosplenial cortex. Eur. J. Neurosci. 211420–1430.

    Google Scholar 

  • Uylings, H. B., and van Eden, C. G. (1990). Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog. Brain Res. 8531–62.

    Article  PubMed  CAS  Google Scholar 

  • Väisänen, J., Lindén, A. M., Lakso, M., Wong, G., Heinemann, U., and Castrén, E. (1999). Excitatory actions of NMDA receptor antagonists in rat entorhinal cortex and cultured entorhinal cortical neurons. Neuropsychopharmacolog 21137–146.

    PubMed  Google Scholar 

  • Verma, A., and Moghaddam, B. (1996). NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: Modulation by dopamine. J. Neurosci. 16373–379.

    PubMed  CAS  Google Scholar 

  • Wisden, W., and Morris, B. (1994). In situ hybridization with synthetic oligonucleotide probes. In Wisden, W., and Morris, B. (eds.), In Situ Hybridization Protocols for Neurobiology, Academic Press, London, pp. 1–34.

    Google Scholar 

  • Zhang, D. X., and Bertram, E. H. (2002). Midline thalamic region: Widespread excitatory input to the entorhinal cortex and amygdala. J. Neurosci. 223277–3284.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Castrén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Väisänen, J., Ihalainen, J., Tanila, H. et al. Effects of NMDA-Receptor Antagonist Treatment on c-fos Expression in Rat Brain Areas Implicated in Schizophrenia. Cell Mol Neurobiol 24, 769–780 (2004). https://doi.org/10.1007/s10571-004-6918-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-004-6918-7

Navigation