Skip to main content
Log in

Determination of absorption and structural properties of cellulose-based hydrogel via ultrasonic pulse-echo time-of-flight approach

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Biodegradable cellulose-based hydrogels are attracting increasing interest in the academic and industrial fields thanks to their high swelling capacity and reproducibility, which allow many novel applications. These properties are enabled by amplification effect of their sensitiveness on a molecular level, translated into macroscopic effects such as a change in swelling degree. The monitoring of the hydrogel state is a crucial step for understanding the response of the hydrogel to external environment. Accordingly, the major aim of this study is to exploit ultrasound to characterize the swelling and degradation of cellulose-based hydrogel with different blend of molecular weight and degree of substitutions. The ultrasonic sensor used herein relies on the determination of a Pulse-echo time of flight. This technique provides dimensional information, thanks to its capability of monitoring the thickness of the swollen/unswollen hydrogel during sorption mechanism. Furthermore, by combining these data with a rheological characterization, the degree of crosslink and its modification during multiple swelling/deswelling cycles (due to ion strength variation) has been monitored. This technique could be an effective, alternative, fast and non-destructive method for real-time hydrogel characterization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anbergen U, Oppermann W (1990) Elasticity and swelling behaviour of chemically crosslinked cellulose ethers in aqueous systems. Polymer 31(10):1854–1858

    Article  CAS  Google Scholar 

  • Angrisani L et al (2009) Ultrasonic-based distance measurement through discrete extended Kalman filter. Kalman filter recent advances and applications. InTech

  • Angrisani L et al (2006) A measurement method based on Kalman filtering for ultrasonic time-of-flight estimation. IEEE Trans Instrum Meas 55(2):442–448

    Article  Google Scholar 

  • Brannon-Peppas L, Peppas N (1990) The equilibrium swelling behavior of porous and non-porous hydrogels. Studies in polymer science. Elsevier 8:67–102

    CAS  Google Scholar 

  • Buchholz F, Polymers IS (1994) Science and technology. In: Buchholz FL, Peppas NA (eds) ACS symposium series

  • Buenger D et al (2012) Hydrogels in sensing applications. Prog Polym Sci 37(12):1678–1719

    Article  CAS  Google Scholar 

  • Capitani D et al (2000) 13C solid-state NMR determination of cross-linking degree in superabsorbing cellulose-based networks. Macromolecules 33(2):430–437

    Article  CAS  Google Scholar 

  • Casciaro S et al (2009) Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels. J Mater Sci Mater Med 20(4):983–989

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53

    Article  CAS  Google Scholar 

  • Demitri C et al (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460

    Article  CAS  Google Scholar 

  • El-Sherif H et al (2010) pH-sensitive hydrogels based on bovine serum albumin for anticancer drug delivery. J Appl Polym Sci 115(4):2050–2059

    Article  CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Geng L et al (2017) Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 24(12):5417–5429

    Article  CAS  Google Scholar 

  • Kim D, Park K (2004) Swelling and mechanical properties of superporous hydrogels of poly (acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks. Polymer 45(1):189–196

    Article  CAS  Google Scholar 

  • Komorowska P et al (2017) Effect of the degree of substitution on the rheology of sodium carboxymethylcellulose solutions in propylene glycol/water mixtures. Cellulose 24(10):4151–4162

    Article  CAS  Google Scholar 

  • Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49(12):2990–3006

    Article  CAS  Google Scholar 

  • Lenzi F et al (2003) Probing the degree of crosslinking of a cellulose based superabsorbing hydrogel through traditional and NMR techniques. Polymer 44(5):1577–1588

    Article  CAS  Google Scholar 

  • Lionetto F et al (2005) Ultrasonic monitoring of the network formation in superabsorbent cellulose based hydrogels. Polymer 46(6):1796–1803

    Article  CAS  Google Scholar 

  • Lohakan M et al (2010) A numerical model for ultrasonic measurements of swelling and mechanical properties of a swollen PVA hydrogel. Ultrasonics 50(8):782–789

    Article  CAS  PubMed  Google Scholar 

  • Luprano V et al (2000) Glass–rubber phase transformation detected in polymers by means of ultrasonic waves. J Alloy Compd 310(1):382–387

    Article  CAS  Google Scholar 

  • Maffezzoli A et al (1998) Ultrasonic characterization of water sorption in poly (2-hydroxyethyl methacrylate) hydrogels. J Appl Polym Sci 67(5):823–831

    Article  CAS  Google Scholar 

  • Marioli D et al (1992) Digital time-of-flight measurement for ultrasonic sensors. IEEE Trans Instrum Meas 41(1):93–97

    Article  Google Scholar 

  • Park KM et al (2010) In situ forming hydrogels based on tyramine conjugated 4-Arm-PPO-PEO via enzymatic oxidative reaction. Biomacromol 11(3):706–712

    Article  CAS  Google Scholar 

  • Peppas NA (1987) Hydrogels in medicine and pharmacy: properties and applications. CRC PressI Llc, Boca Raton

    Google Scholar 

  • Peppas NA, Van Blarcom DS (2016) Hydrogel-based biosensors and sensing devices for drug delivery. J Control Release 240:142–150

    Article  CAS  PubMed  Google Scholar 

  • Ramuhalli P et al (2002) Multichannel signal processing methods for ultrasonic nondestructive evaluation. In: Sensor array and multichannel signal processing workshop proceedings, 2002, IEEE

  • Sabatini AM, et al (1995) A low-cost, composite sensor array combining ultrasonic and infrared proximity sensors. In: Proceedings. 1995 IEEE/RSJ international conference on intelligent robots and systems 95.’human robot interaction and cooperative robots. IEEE

  • Sadeghi M, Hosseinzadeh H (2013) Synthesis and properties of collagen-g-poly (sodium acrylate-co-2-hydroxyethylacrylate) superabsorbent hydrogels. Braz J Chem Eng 30(2):379–389

    Article  CAS  Google Scholar 

  • Sadeghi M et al (2012) Synthesis and investigation of a novel pH-and salt-responsive superabsorbent hydrogel based on pectin. Current World Environment 7(1):69–77

    Article  CAS  Google Scholar 

  • Saldivar-Guerra E, Vivaldo-Lima E (2013) Handbook of polymer synthesis, characterization, and processing. Wiley, Hoboken

    Book  Google Scholar 

  • Sannino A, Nicolais L (2005) Concurrent effect of microporosity and chemical structure on the equilibrium sorption properties of cellulose-based hydrogels. Polymer 46(13):4676–4685

    Article  CAS  Google Scholar 

  • Sannino A et al (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res, Part A 67(3):1016–1024

    Article  CAS  Google Scholar 

  • Sannino A et al (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46(25):11206–11212

    Article  CAS  Google Scholar 

  • Sannino A et al (2007) Spin coating cellulose derivatives on quartz crystal microbalance plates to obtain hydrogel-based fast sensors and actuators. J Appl Polym Sci 106(5):3040–3050

    Article  CAS  Google Scholar 

  • Seki Y et al (2014) Carboxymethylcellulose (CMC)–hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose 21(3):1689–1698

    Article  CAS  Google Scholar 

  • Stell G, Joslin C (1986) The Donnan equilibrium: a theoretical study of the effects of interionic forces. Biophys J 50(5):855–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulijn RV et al (2007) Bioresponsive hydrogels. Mater Today 10(4):40–48

    Article  CAS  Google Scholar 

  • Venkatesh S et al (2008) Transport and structural analysis of molecular imprinted hydrogels for controlled drug delivery. Eur J Pharm Biopharm 69(3):852–860

    Article  CAS  PubMed  Google Scholar 

  • Zandraa O et al (2011) Viscoelastic properties and morphology of mumio‐based medicated hydrogels. In: AIP conference proceedings, AIP

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo Lamanna, Francesco Rizzi or Christian Demitri.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamanna, L., Rizzi, F., Demitri, C. et al. Determination of absorption and structural properties of cellulose-based hydrogel via ultrasonic pulse-echo time-of-flight approach. Cellulose 25, 4331–4343 (2018). https://doi.org/10.1007/s10570-018-1874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1874-4

Keywords

Navigation