Skip to main content
Log in

Strong cellulose nanofibre–nanosilica composites with controllable pore structure

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Flexible nanocellulose composites with silica nanoparticle loading from 5 to 77 wt% and tunable pore size were made and characterised. The pore structure of the new composites can be controlled (100–1000 nm to 10–60 nm) by adjusting the silica nanoparticle content. Composites were prepared by first complexing nanoparticles with a cationic dimethylaminoethyl methacrylate polyacrylamide, followed by retaining this complex in a nanocellulose fibre network. High retention of nanoparticles resulted. The structural changes and pore size distribution of the composites were characterised through scanning electron microscopy (SEM) and mercury porosimetry analysis, respectively. The heavily loaded composites formed packed bed structures of nanoparticles. Film thickness was approximately constant for composites with low loading, indicating that nanoparticles filled gaps created by nanocellulose fibres without altering their structure. Film thickness increased drastically for high loading because of the new packed bed structure. Unexpectedly, within the investigated loading range, the level of the tensile index on nanocellulose mass basis remained constant, showing that the silica nanoparticles did not significantly interfere with the bonding between the cellulose nanofibres. This hierarchically engineered material remains flexible at all loadings, and its unique packing enables use in applications requiring nanocellulose composites with controlled pore structure and high surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bringley JF, Wunder A, Howe AM, Wesley RD, Qiao TA, Liebert NB et al (2006) Controlled, simultaneous assembly of polyethylenimine onto nanoparticle silica colloids. Langmuir 22(9):4198–4207

    Article  CAS  Google Scholar 

  • Farhang B (2007) Nanotechnology and lipids. Lipid Technol 19(6):132–135

    Article  Google Scholar 

  • Garusinghe UM, Raghuwanshi VS, Garvey CJ, Varanasi S, Hutchinson CR, Batchelor W et al (2017) Assembly of nanoparticles–polyelectrolyte complexes in nanofiber cellulose structures. Colloids Surf A 513:373–379

    Article  CAS  Google Scholar 

  • Kausch H, Michler G (2007) Effect of nanoparticle size and size-distribution on mechanical behavior of filled amorphous thermoplastic polymers. J Appl Polym Sci 105(5):2577–2587

    Article  CAS  Google Scholar 

  • Kim J, Yun S, Ounaies Z (2006) Discovery of cellulose as a smart material. Macromolecules 39(12):4202–4206

    Article  CAS  Google Scholar 

  • Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q et al (2013) Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Sour 242:533–540

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P et al (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides II. Springer, New York, pp 49–96

    Google Scholar 

  • Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816

    Article  CAS  Google Scholar 

  • Krol LF, Beneventi D, Alloin F, Chaussy D (2015) Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition. J Mater Sci 50(11):4095–4103

    Article  CAS  Google Scholar 

  • Li H, Fu S, Peng L (2013) Surface modification of cellulose fibers by layer-by-layer self-assembly of lignosulfonates and TiO2 nanoparticles: effect on photocatalytic abilities and paper properties. Fibers Polym 14(11):1794–1802

    Article  CAS  Google Scholar 

  • Li Q, Raj P, Husain FA, Varanasi S, Rainey T, Garnier G et al (2016) Engineering cellulose nanofibre suspensions to control filtration resistance and sheet permeability. Cellulose 23(1):391–402

    Article  CAS  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12(3):633–641

    Article  CAS  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3(8):1341–1346

    Article  CAS  Google Scholar 

  • Ngo YH, Li D, Simon GP, Garnier G (2013) Effect of cationic polyacrylamide dissolution on the adsorption state of gold nanoparticles on paper and their surface enhanced Raman scattering properties. Colloids Surf A 420:46–52

    Article  CAS  Google Scholar 

  • Oksman K, Mathew A, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784

    Article  CAS  Google Scholar 

  • Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517

    Article  CAS  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198

    Article  CAS  Google Scholar 

  • Sehaqui H, Morimune S, Nishino T, Berglund LA (2012) Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning. Biomacromolecules 13(11):3661–3667

    Article  CAS  Google Scholar 

  • Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21(1):367–382

    Article  CAS  Google Scholar 

  • Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2009) Synthesis and characterization of bionanocomposites with tunable properties from poly (lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464

    Article  Google Scholar 

  • Varanasi S, Chiam HH, Batchelor W (2012) Application and interpretation of zero and short-span testing on nanofibre sheet materials. Nord Pulp Pap Res J 27(2):343

    Article  CAS  Google Scholar 

  • Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 20(4):1885–1896

    Article  CAS  Google Scholar 

  • Varanasi S, Low Z-X, Batchelor W (2015) Cellulose nanofibre composite membranes—biodegradable and recyclable UF membranes. Chem Eng J 265:138–146

    Article  CAS  Google Scholar 

  • Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32(04):314–322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank MCEM for scanning electron microscopy and Scot Sharman for technical help. The authors acknowledge financial support from the Australian Research Council, Australian Paper, Carter Holt Harvey, Circa, Norske Skog and Visy through Industry Transformation Research Hub Grant IH130100016. U.M.G. thanks Monash University for MGS and FEIPRS scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Batchelor.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garusinghe, U.M., Varanasi, S., Garnier, G. et al. Strong cellulose nanofibre–nanosilica composites with controllable pore structure. Cellulose 24, 2511–2521 (2017). https://doi.org/10.1007/s10570-017-1265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1265-2

Keywords

Navigation