Skip to main content
Log in

Preparation, characterization and antimicrobial application of hybrid cellulose-lignin beads

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the present study, cellulose-lignin beads were prepared using pretreated dissolving grade-pulp and extracted from birch wood hydrotropic lignin as starting materials. The preparation involved dissolution of both polymers in environmentally friendly 7% NaOH/12% urea aqueous solution, shaping the solution into beads and subsequent regeneration. Lignin content in the beads varied from 0 to 40%. The beads were characterized using FTIR, scanning electron and confocal fluorescence microscopy. Porosity, swelling behavior and leaching of lignin from the beads in water were studied as well. The antibacterial properties of the beads and original hydrotropic lignin were tested using Escherichia coli (XL-1 Blue) and Staphylococcus aureus (ATCC 25923). The obtained beads in a never-dried state were highly porous spherical particles with evenly distributed lignin in them. Their shape, structure and properties were influenced by the lignin content. The beads did not show antibacterial activity against gram-negative E. coli. On the other hand, never-dried cellulose-lignin beads inhibited growth of gram-positive S. aureus, and the inhibition efficiency increased with the lignin content. The half inhibitory concentration for never-dried beads with 40% of lignin was 1.06 mg (dry weight) per 1 mL of broth determined after incubation for 24 h at 37 °C and at initial concentration of S. aureus of 6.48 log(CFU/mL). In contrast to cellulose-lignin beads, pure cellulose beads did not inhibit growth of S aureus. The results demonstrated that hydrotropic birch lignin can be used for the preparation of composite cellulose-lignin beads. Such beads show a great potential for antibacterial applications against S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. doi:10.1002/mabi.200400222

    Article  CAS  Google Scholar 

  • Cai BJ, Zhang L, Zhou J et al (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825. doi:10.1002/adma.200601521

    Article  CAS  Google Scholar 

  • Cañavate J, Pagés P, Saurina J, Colom X, Carrasco F (2000) Determination of small interactions in polymer composites by means of FTIR and DSC. Polym Bull 44:293–300. doi:10.1007/s002890050605

    Article  Google Scholar 

  • Cazacu G, Capraru M, Popa VI (2013) Advances concerning lignin utilization in new materials. In: Thomas S, Visakh PM, Mathew AP (eds) Advances in natural polymers: composites and nanocomposites. Springer, Heidelberg, pp 255–312

    Chapter  Google Scholar 

  • Cetin-Karaca H, Newman MC (2015) Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia Coli. Food Biosci 11:8–16. doi:10.1016/j.fbio.2015.03.002

    Article  CAS  Google Scholar 

  • Chen G-F, Liu M-H (2012) Adsorption of l-lysine from aqueous solution by spherical lignin beads: kinetics and equilibrium studies. BioResources 7:298–314

    Article  CAS  Google Scholar 

  • Cueva C, Moreno-Arribas MV, Martín-Álvarez PJ et al (2010) Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol 161:372–382. doi:10.1016/j.resmic.2010.04.006

    Article  CAS  Google Scholar 

  • Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour Technol 95:309–317. doi:10.1016/j.biortech.2004.02.024

    Article  CAS  Google Scholar 

  • Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crops Prod 34:1629–1634. doi:10.1016/j.indcrop.2011.06.002

    Article  CAS  Google Scholar 

  • Egal M, Budtova T, Navard P (2008) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose (Dordrecht, Neth) 15:361–370. doi:10.1007/s10570-007-9185-1

    CAS  Google Scholar 

  • Ettenauer M, Loth F, Thümmler K, Fischer S, Weber V, Falkenhagen D (2011) Characterization and functionalization of cellulose microbeads for extracorporeal blood purification. Cellulose (Dordrecht, Neth) 18:1257–1263. doi:10.1007/s10570-011-9567-2

    CAS  Google Scholar 

  • Evans R, Wallis AFA (1989) Cellulose molecular weights determined by viscometry. J Appl Polym Sci 37:2331–2340. doi:10.1002/app.1989.070370822

    Article  CAS  Google Scholar 

  • Faix O (1991) Classification of lignin’s from different botanical origins by FT-IR spectroscopy. Holzforschung 45:s21–s28. doi:10.1515/hfsg.1991.45.s1.21

    Article  Google Scholar 

  • Feldman D (2002) Lignin and its polyblends—a review. In: Hu TQ (ed) Chemical modification, properties, and usage of lignin. Springer, Boston, pp 81–99

    Chapter  Google Scholar 

  • Gabov K, Gosselink RJA, Smeds AI, Fardim P (2014) Characterization of lignin extracted from birch wood by a modified hydrotropic process. J Agric Food Chem 62:10759–10767. doi:10.1021/jf5037728

    Article  CAS  Google Scholar 

  • Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836. doi:10.1021/cr300242j

    Article  CAS  Google Scholar 

  • Gromov V, Odincov P (1957) Composition and properties of the lignin hydrotropically isolated from hardwood. Tr Inst Lesokhoz, Probl Akad Nauk Latv SSR, Vopr Lesokhim i Khim Drev 12:91–100

    Google Scholar 

  • Hergert HL (1971) Infrared spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley, New York, pp 267–297

    Google Scholar 

  • Kondo T, Sawatari C, Manley RSJ, Gray DG (1994) Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27:210–215. doi:10.1021/ma00079a031

    Article  CAS  Google Scholar 

  • Larkin PJ (2011) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier, Amsterdam

    Google Scholar 

  • Lopez-Malo Vigil A, Palou E, Alzamora SM (2005) Naturally occurring compounds - plant sources. In: Davidson PM, Sofos JN, Branen AL (eds) Antimicrobials in food, 3rd edn. CRC Press LLC, Boca Raton, pp 429–451

    Google Scholar 

  • Maximova N, Stenius P, Salmi J (2004) Lignin uptake by cellulose fibres from aqueous solutions. Nord Pulp Pap Res J 19:135–145. doi:10.3183/NPPRJ-2004-19-02-p135-145

    Article  CAS  Google Scholar 

  • McKee RH (1954) Comparison of wood pulping processes. Pulp Pap Mag Can 55:64–66

    CAS  Google Scholar 

  • Moskala EJ, Varnell DF, Coleman MM (1985) Concerning the miscibility of poly(vinyl phenol) blends—Fourier-transform IR study. Polymer (Guildf) 26:228–234. doi:10.1016/0032-3861(85)90034-5

    Article  CAS  Google Scholar 

  • Nada AMA, El-Diwany AI, Elshafei AM (1989) Infrared and antimicrobial studies on different lignins. Acta Biotechnol 9:295–298. doi:10.1002/abio.370090322

    Article  CAS  Google Scholar 

  • Nelson JL, Alexander JW, Gianotti L, Chalk CL, Pyles T (1994) Influence of dietary fiber on microbial growth in vitro and bacterial translocation after burn injury in mice. Nutrition 10:32–36

    CAS  Google Scholar 

  • Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178:5853–5859

    Article  CAS  Google Scholar 

  • Nikaido H (2009) Outer membrane, gram-negative bacteria. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic Press, Oxford, pp 439–452

    Chapter  Google Scholar 

  • Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813. doi:10.1021/jf0605392

    Article  CAS  Google Scholar 

  • Purcell KF, Drago RS (1967) Theoretical aspects of the linear enthalpy wavenumber shift relation for hydrogen-bonded phenols. J Am Chem Soc 89:2874–2879. doi:10.1021/ja00988a013

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787. doi:10.1007/s10570-008-9230-8

    Article  CAS  Google Scholar 

  • Rosenberg P, Suominen I, Rom M, Janicki J, Fardim P (2007) Tailored cellulose beads for novel applications. Cellul Chem Technol 41:243–254

    Google Scholar 

  • Saidane D, Barbe J, Birot M, Deleuze H (2010) Preparation of functionalized Kraft lignin beads. J Appl Polym Sci 116:1184–1189. doi:10.1002/app.31659

    CAS  Google Scholar 

  • Schwanninger M, Hinterstoisser B (2002) Klason lignin: modifications to improve the precision of the standardized determination. Holzforschung 56:161–166. doi:10.1515/HF.2002.027

    Article  CAS  Google Scholar 

  • Sescousse R, Smacchia A, Budtova T (2010) Influence of lignin on cellulose–NaOH–water mixtures properties and on Aerocellulose morphology. Cellulose (Dordrecht, Neth) 17:1137–1146. doi:10.1007/s10570-010-9448-0

    CAS  Google Scholar 

  • Shan B, Cai Y-Z, Brooks JD, Corke H (2007) Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against food borne pathogenic bacteria. J Agric Food Chem 55:5484–5490. doi:10.1021/jf070424d

    Article  CAS  Google Scholar 

  • Slavikova E, Kosikova B (1994) Inhibitory effect of lignin byproducts of pulping on yeast growth. Folia Microbiol (Prague, Czech Republic) 39:241–243. doi:10.1007/BF02814656

    Article  CAS  Google Scholar 

  • Suhas, Carrott PJM, Ribeiro Carrott MML (2007) Lignin—from natural adsorbent to activated carbon: a review. Bioresour Technol 98:2301–2312. doi:10.1016/j.biortech.2006.08.008

    Article  CAS  Google Scholar 

  • Telysheva G, Dizhbite T, Lebedeva G, Nikolaeva V (2005) Lignin products for decontamination of environment objects from pathogenic microorganisms and pollutants. In: 7th international lignin forum of ILI. Barcelona, pp 71–74

  • Trygg J, Fardim P (2011) Enhancement of cellulose dissolution in water-based solvent via ethanol-hydrochloric acid pretreatment. Cellulose (Dordrecht, Neth) 18:987–994. doi:10.1007/s10570-011-9550-y

    CAS  Google Scholar 

  • Trygg J, Fardim P, Gericke M, Mäkilä E, Salonen J (2013) Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr Polym 93:291–299. doi:10.1016/j.carbpol.2012.03.085

    Article  CAS  Google Scholar 

  • Trygg J, Yildir E, Kolakovic R, Sandler N, Fardim P (2014) Anionic cellulose beads for drug encapsulation and release. Cellulose (Dordrecht, Neth) 21:1945–1955. doi:10.1007/s10570-014-0253-z

    CAS  Google Scholar 

  • Trygg J, Trivedi P, Fardim P (2016) Controlled depolymerisation of cellulose to a given degree. Cellul Chem Technol 50:557–567

    Google Scholar 

  • Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206. doi:10.1016/j.progpolymsci.2015.07.003

    Article  CAS  Google Scholar 

  • Wu Y, Zhang S, Guo X, Huang H (2008) Adsorption of chromium (III) on lignin. Bioresour Technol 99:7709–7715. doi:10.1016/j.biortech.2008.01.069

    Article  CAS  Google Scholar 

  • Xing B, McGill WB, Dudas MJ, Maham Y, Hepler L (1994) Sorption of phenol by selected biopolymers: isotherms, energetics, and polarity. Environ Sci Technol 28:466–473. doi:10.1021/es00052a019

    Article  CAS  Google Scholar 

  • Zemek J, Kosikova B, Augustin J, Joniak D (1979) Antibiotic properties of lignin components. Folia Microbiol (Prague, Czech Republic) 24:483–486. doi:10.1007/BF02927180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Graduate School for Biomass Refining (BIOREGS), Graduate School of Chemical Engineering (GSCE) and, also, the BioCenter Finland DDCB network at Åbo Akademi for financial support. Jani Trygg is kindly acknowledged for providing pretreated pulp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Fardim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1833 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabov, K., Oja, T., Deguchi, T. et al. Preparation, characterization and antimicrobial application of hybrid cellulose-lignin beads. Cellulose 24, 641–658 (2017). https://doi.org/10.1007/s10570-016-1172-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1172-y

Keywords

Navigation