Skip to main content
Log in

Hydrolyzability of mannan after adsorption on cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

During the pretreatment of lignocellulosic materials, the dissolved mannan would re-adsorb on cellulose, and then inhibited the cellulose hydrolysis by cellulases. However, the adsorption of mannan on cellulose and hydrolyzability of mannan adsorbed on cellulose were not so clear. In this work, the adsorption behavior of mannans on cellulose and the hydrolysis of adsorbed mannan by mannanase were investigated. Adsorption of 1, 4-β-D-mannan (mannan), Konjac glucomannan (GM), and Carob galactomannan (GalM) on Avicel and corn stover (CS) was increased with mannan loading. The adsorbed amount of mannan (94.4 mg/g Avicel and 85.1 mg/g CS) on cellulosic substrates at the mannan concentration of 5 mg/mL was significantly higher (p < 0.05) than that of GM (65.7 mg/g Avicel and 63.7 mg/g CS) and GalM (44.3 mg/g Avicel and 48.7 mg/g CS). Furthermore, the NMR spectra and molecular weight analysis showed that mannan with less side groups and low molecular weight might increase the adsorption. Mannan, GM, and GalM adsorbed on Avicel and CS, which was used as Avicel/CS -mannan/GM/GalM complex, could be hydrolyzed by mannanase, and the hydrolyzability of Avicel-mannan/GalM complexes was stronger than that of Avicel-GM complex. Similarly, the reducing sugars increased by 23.2 and 54.2 % for Avicel-mannan and Avicel-GalM complexes after 48 h hydrolysis by cellulase and mannanase, respectively. The results suggested that the addition of mannanase could hydrolyze the mannan adsorbed on cellulose and potentially improved hydrolysis efficiency of cellulose in lignocelluloses. Additionally, the mannanase supplementation could be extended to the removal of mannan on pulp by mannanase and finally affecting the dissolving pulps and paper quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Annergren GE, Rydholm SA (1960) On the stabilisation of glucomannan in the pulping processes. Svensk Papperstidn 63:591–600

    CAS  Google Scholar 

  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD (2010) Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol Biofuels 3:22

    Article  Google Scholar 

  • Chauhan PS, Sharma P, Puri N, Gupta N (2014) Purification and characterization of an alkali-thermostable β-mannanase from Bacillus nealsonii PN-11 and its application in mannooligosaccharides preparation having prebiotic potential. Eur Food Res Technol 238:927–936

    Article  CAS  Google Scholar 

  • Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27(4):197–216

    Article  CAS  Google Scholar 

  • Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168:167

    Article  CAS  Google Scholar 

  • Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gübitz GM, Stebbing DW, Johansson CI, Saddler JN (1998) Lignin-hemicellulose complexes restrict enzymatic solubilization of mannan and xylan from dissolving pulp. Appl Microbiol Biot 50:390–395

    Article  Google Scholar 

  • Hannuksela T, Tenkanen M, Holmbom B (2002) Sorption of dissolved galactoglucomannans and galactomannans to bleached kraft pulp. Cellulose 9:251–261

    Article  CAS  Google Scholar 

  • Hannuksela T, Fardim P, Holmbom B (2003) Sorption of spruce O-acetylated galactoglucomannans onto different pulp fibres. Cellulose 10:317–324

    Article  CAS  Google Scholar 

  • Heiss C, Burtnick MN, Wang Z, Azadi P, Brett PJ (2012) Structural analysis of capsular polysaccharides expressed by Burkholderia mallei and Burkholderia pseudomallei. Carbohydr Res 349:90–94

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Katsuraya K, Okuyama K, Hatanaka K, Oshima R, Sato T, Matsuzaki K (2003) Constitution of konjac glucomannan: chemical analysis and 13C NMR spectroscopy. Carbohydr Polym 53:183–189

    Article  CAS  Google Scholar 

  • Köhnke T (2010) Adsorption of xylans on cellulosic fibres-Influence of xylan composition on adsorption characteristics and kraft pulp properties. Dissertation, Chalmers University of Technology

  • Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2014) Strong cellulase inhibition by mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111:1341–1353

    Article  CAS  Google Scholar 

  • Li J, Zhang H, Duan C, Liu Y, Ni Y (2015) Enhancing hemicelluloses removal from a softwood sulfite pulp. Bioresour Technol 192:11–16

    Article  CAS  Google Scholar 

  • Linder Å, Gatenholm P (2004) Effect of cellulose substrate on assembly of xylans. In: Gatenholm P, Tenkanen M (eds.) Hemicelluloses: Science and technology. ACS Symposium Series 864, pp. 236–253

  • Linder Å, Bergman R, Bodin A, Gatenholm P (2003) Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 19:5072–5077

    Article  CAS  Google Scholar 

  • Maeda M, Shimahara H, Sugiyama N (1980) Detailed examination of the branched structure of konjac glucomannan. Agric Biol Chem 44:245–252

    CAS  Google Scholar 

  • Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechn 31:1167–1175

    Article  CAS  Google Scholar 

  • Mikkelson A, Maaheimo H, Hakala TK (2013) Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydr Res 372:60–68

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mishima T, Hisamatsu M, York WS, Teranishi K, Yamada T (1998) Adhesion of β-d-glucans to cellulose. Carbohydr Res 308:389–395

    Article  CAS  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biot 79:165–178

    Article  CAS  Google Scholar 

  • Muschin T, Yoshida T (2012) Structural analysis of galactomannans by NMR spectroscopy. Carbohydr Polym 87:1893–1898

    Article  CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1998) Interactions between locust bean gum and cellulose characterized by 13C n.m.r. spectroscopy. Carbohydr Polym 36:167–172

    Article  CAS  Google Scholar 

  • Omarsdottir S, Petersen BO, Barsett H, Paulsen BS, Duus JØ, Olafsdottir ES (2006) Structural characterisation of a highly branched galactomannan from the lichen Peltigeracanina by methylation analysis and NMR-spectroscopy. Carbohydr Polym 63:54–60

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:764–786

    Article  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Sci Mag 306:2206–2211

    CAS  Google Scholar 

  • Suurnäkki A, Oksanen T, Schönberg C, Buchert J (2001) Role of surface xylan and glucomannan on the properties of reinforcement fibres. In: 11th Proceedings Int. Symp. Wood. Pulping Chem., Vol. II., Nice, France, pp. 181–184

  • Swanson JW (1950) The effects of natural beater additives on papermaking fibers. Tappi 33:451–463

    CAS  Google Scholar 

  • Várnai A, Huikko L, Pere J, Siika-aho M, Viikari L (2011) Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour Technol 102:9096–9104

    Article  Google Scholar 

  • Vlasenko E, Schülein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101:2405–2411

    Article  CAS  Google Scholar 

  • Wang X, Li K, Yang M, Zhang J (2016) Hydrolyzability of xylan after adsorption on cellulose: exploration of xylan limitation on enzymatic hydrolysis of cellulose. Carbohydr Polym 148:362–370

    Article  CAS  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309

    Article  CAS  Google Scholar 

  • Willför S, Sjöholm SR, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52:175–187

    Article  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  Google Scholar 

  • Xin D, Ge X, Sun Z, Viikari L, Zhang J (2015) Competitive inhibition of cellobiohydrolase I by manno-oligosaccharides. Enzyme Microb Tech 68:62–68

    Article  CAS  Google Scholar 

  • Zhang J, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Project number: 31270622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, K., Yang, M. et al. Hydrolyzability of mannan after adsorption on cellulose. Cellulose 24, 35–47 (2017). https://doi.org/10.1007/s10570-016-1098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1098-4

Keywords

Navigation