Skip to main content
Log in

In vitro biodegradability of bacterial cellulose by cellulase in simulated body fluid and compatibility in vivo

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) has great potential for use as a tissue scaffold due to its unique structure and properties including high tensile strength and good biocompatibility. However, poor biodegradability of BC in the human body may be a key disadvantage limiting its application in the field. In this paper, we developed a simple absorption method to prepare biodegradable cellulase/BC materials. The morphology, structure, degradation ratio and mechanical properties during the degradation process were characterized and investigated. In vitro studies reveal that the BC material degraded gradually in simulated body fluid within 24 weeks and the degradation rate could be adjusted by modulating the cellulase content. The mechanical properties indicate the cellulase/BC material could maintain tensile strength for as long as 24 days during the degradation process. Muscle-derived cells were seeded on the cellulase/BC material to evaluate the cytotoxicity, using LIVE/DEAD® viability/cytotoxicity assay and H&E staining. In vivo biocompatibility was evaluated by subcutaneous implantation using a dog model for 1, 2, 3 and 4 weeks. These results demonstrate that the cellulase/BC material had good in vitro and in vivo biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvarez O, Patel M, Booker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:224–233

    Google Scholar 

  • Atala A (1997) Tissue engineering in the genitourinary system. Synthetic biodegradable polymer scaffolds. Birkhäuser, Boston, pp 149–164

    Book  Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Article  Google Scholar 

  • Bäckdahl H, Risberg B, Gatenholm P (2011) Observations on bacterial cellulose tube formation for application as vascular graft. Mater Sci Eng, C 31:14–21

    Article  Google Scholar 

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  Google Scholar 

  • Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901

    Article  CAS  Google Scholar 

  • Brown AJ (1886) XLIII. On an acetic ferment which forms cellulose. J Chem Soc, Faraday Trans 49:432–439

    Article  CAS  Google Scholar 

  • Catchmark JM, Fugmann B, Hu Y (2010) Degradable biomolecule compositions. Google patents, US 2010/0172889 A1

  • Czaja W, Kyryliouk D, DePaula CA, Buechter DD (2014) Oxidation of γ-irradiated microbial cellulose results in bioresorbable, highly conformable biomaterial. J Appl Polym Sci 131:39995–40006

    Article  Google Scholar 

  • Endo K, Hakamada Y, Takizawa S, Kubota H, Sumitomo N, Kobayashi T, Ito S (2001) A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic properties, and nucleotide and deduced amino acid sequences. Appl Microbiol Biotechnol 57:109–116

    Article  CAS  Google Scholar 

  • Gusakov AV, Salanovich TN, Antonov AI, Ustinov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038

    Article  CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Article  Google Scholar 

  • Hu Y, Catchmark JM (2011a) In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biomater 7:2835–2845

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2011b) Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res B 97:114–123

    Article  Google Scholar 

  • Hu W, Liu S, Chen S, Wang H (2011) Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18:655–661

    Article  CAS  Google Scholar 

  • Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30

    Article  Google Scholar 

  • Jeffries T, Eveleigh D, Macmillan J, Parrish F, Reese E (1977) Enzymatic hydrolysis of the walls of yeasts cells and germinated fungal spores. BBA Gen Subj 499:10–23

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 24:721–734

    Article  CAS  Google Scholar 

  • Li J, Wan Y, Li L, Liang H, Wang J (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng, C 29:1635–1642

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Chen S, Feng C, Chen S, Yin N, Yang J, Wang H, Xu Y (2015) Facilely green synthesis of silver nanoparticles into bacterial cellulose. Cellulose 22:373–383

    Article  CAS  Google Scholar 

  • Liu S-L, Chen W-Z, Wang Y, Liu G, Yu S-W, Xing M (2008) Purification and characterization of a novel neutral β-glucanase and an alkaline β-glucanase from an alkaliphilic Bacillus isolate. World J Microbiol Biotechnol 24:149–155

    Article  Google Scholar 

  • Maurel W, Thalmann D, Wu Y, Thalmann NM (1998) Constitutive modeling. Biomechanical models for soft tissue simulation. Springer, Berlin, pp 79–120

    Book  Google Scholar 

  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597

    Article  CAS  Google Scholar 

  • Müller D, Rambo C, Recouvreux D, Porto L, Barra G (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111

    Article  Google Scholar 

  • Nakanishi Y, Chen G, Komuro H, Ushida T, Kaneko S, Tateishi T, Kaneko M (2003) Tissue-engineered urinary bladder wall sing PLGA mesh-collagen hybrid scaffolds: a comparison study of collagen sponge and gel as a caffold. J Pediatr Surg 38:1781–1784

    Article  Google Scholar 

  • Ni J, Wang M (2002) In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater Sci Eng, C 20:101–109

    Article  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1

    Article  Google Scholar 

  • Peng S, Zheng Y, Wu J, Wu Y, Ma Y, Song W, Xi T (2012) Preparation and characterization of degradable oxidized bacterial cellulose reacted with nitrogen dioxide. Polym Bull 68:415–423

    Article  CAS  Google Scholar 

  • Pértile RA, Moreira S, Gil da Costa RM, Correia A, Guãrdao L, Gartner F, Vilanova M, Gama M (2012) Bacterial cellulose: long-term biocompatibility studies. J Biomater Sci Polym Ed 23:1339–1354

    Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91:1277–1286

    Article  CAS  Google Scholar 

  • Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885

    Article  CAS  Google Scholar 

  • Scrivener A, Zhao L, Slaytor M (1997) Biochemical and immunological relationships between endo-β-1, 4-glucanases from cockroaches. Comp Biochem Physiol B: Biochem Mol Biol 118:837–843

    Article  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan D, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  Google Scholar 

  • Tanaka T, Takahashi M, Nitta N, Furukawa A, Andoh A, Saito Y, Fujiyama Y, Murata K (2006) Newly developed biodegradable stents for benign gastrointestinal tract stenoses: a preliminary clinical trial. Digestion 74:199–205

    Article  CAS  Google Scholar 

  • Vitta S, Drillon M, Derory A (2010) Magnetically responsive bacterial cellulose: synthesis and magnetic studies. J Appl Phys 108:053905

    Article  Google Scholar 

  • Walker L, Wilson D (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36:3–14

    Article  CAS  Google Scholar 

  • Wang J, Zhu Y, Du J (2011) Bacterial cellulose: a natural nanomaterial for biomedical applications. J Mech Med Biol 11:285–306

    Article  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Yang J, Lv X, Chen S, Li Z, Feng C, Wang H, Xu Y (2014) In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21:1823–1835

    Article  CAS  Google Scholar 

  • Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138

    Article  CAS  Google Scholar 

  • Yu L, Lin J, Tian F, Li X, Bian F, Wang J (2014) Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J Mater Chem A 2:6402–6411

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51273043, 51573024 and 81370795), the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyan Chen, Chao Feng or Huaping Wang.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Baoxiu Wang and Xiangguo Lv have contributed equally to this work and also co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Lv, X., Chen, S. et al. In vitro biodegradability of bacterial cellulose by cellulase in simulated body fluid and compatibility in vivo. Cellulose 23, 3187–3198 (2016). https://doi.org/10.1007/s10570-016-0993-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0993-z

Keywords

Navigation