Skip to main content
Log in

Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose

Cellulose Aims and scope Submit manuscript

Abstract

Rod-shaped cellulose nanocrystals obtained by acid hydrolysis of eucalyptus fibers (CNCa) presented high aspect ratio (estimated length and width of 180 and 5 nm, respectively) and zeta potential of −(17 ± 1) mV at pH 6. This typical morphology of cellulose nanocrystals was in contrast to nanoparticles obtained upon enzymatic hydrolysis of bacterial cellulose (CNCe), which were asymmetric and irregular due to surface-bound cellulases and presented a distinctive surface roughness. Interestingly, CNCe also displayed axial grooves, to yield a C-shape cross section that has not been reported before. The effect of the characteristic shape and surface chemistry of CNCa and of grooved CNCe was studied at oil/water interfaces and solid surfaces. Emulsions (20 % v/v oil) prepared with the CNCa were more stable than those prepared with CNCe, owing to their characteristic shape and surface chemistry. Hydrophilic (silica surfaces cationized by pre-adsorbed polycation) and hydrophobic (polystyrene films) solid surfaces were used as substrates for the adsorption of CNCe and CNCa for each type of surface. The ellipsometric data and AFM images indicated larger affinity of CNCe than CNCa for the hydrophobic surface. On the other hand, CNCa formed homogeneous monolayer on hydrophilic surfaces, whereas CNCe formed discontinuous films. Sequential adsorption behavior of CNCa on CNCe layers (or vice versa) suggested that the interaction between them is controlled by the orientation of enzymes bound to CNCe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Ahola S, Turon X, Osterberg M, Laine J, Rojas OJ (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599

    Article  CAS  Google Scholar 

  • Azzam RM, Bashara NM (1989) Ellipsometry and polarized light. North Holland, Amsterdan

    Google Scholar 

  • Boniello G, Blanc C, Fedorenko D, Medfai M, Mbarek NB, In M, Gross M, Stocco A, Nobili M (2015) Brownian diffusion of a partially wetted colloid. Nat Mater 14:908–911

    Article  CAS  Google Scholar 

  • Bubner P, Dohr J, Plank H, Mayrhofer C, Nidetzky B (2012) Cellulases dig deep: in situ observation of the mesoscopic structural dynamics of enzymatic cellulose degradation. J Biol Chem 287:2759–2765

    Article  CAS  Google Scholar 

  • Candanedo SB, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  Google Scholar 

  • Capron I, Cathala B (2013) Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 14:291–296

    Article  CAS  Google Scholar 

  • Carrillo CA, Nypelo TE, Rojas OJ (2015) Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil. J Colloid Interface Sci 439:166–173

    Article  Google Scholar 

  • Cherhal F, Cousin F, Capron I (2016) Structural description of the interface of pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules 17:496–502

    Article  CAS  Google Scholar 

  • Cunha AG, Mougel J-B, Cathala B, Berglund LA, Capron I (2014) Preparation of double pickering emulsions stabilized by chemically tailored nanocelluloses. Langmuir 30:9327–9335

    Article  CAS  Google Scholar 

  • de Mesquita JP, Patrício PS, Donnici CL, Petri DFS, de Oliveira LCA, Pereira FV (2011) Hybrid layer-by-layer assembly based on animal and vegetal structural materials: multilayered films of collagen and celulose nanowhisker. Soft Matter 7:4405–4413

    Article  Google Scholar 

  • Donev A, Cisse I, Sachs D, Variano EA, Stillinger FH, Connelly R, Torquato S, Chaikin PM (2004) Improving the density of jammed disordered packings using ellipsoids. Science 303:990–993

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH, Berlin

    Book  Google Scholar 

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  • French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Bawa AS (2011) Siddaramaiah. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57

    Article  CAS  Google Scholar 

  • Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19:589–598

    Article  CAS  Google Scholar 

  • Gole A, Vyas S, Sainkar SR, Lachke A, Sastry M (2001) Enhanced temperature and ph stability of fatty amine–endoglucanase composites: fabrication, substrate protection, and biological activity. Langmuir 17:5964–5970

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148

    Article  CAS  Google Scholar 

  • Hunter TN, Pugh RJ, Franks GV, Jameson GJ (2008) The role of particles in stabilising foams and emulsions. Adv Colloid Interface Sci 137:57–81

    Article  CAS  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttila M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282

    Article  CAS  Google Scholar 

  • Jia X, Xu R, Shen W, Xie M, Abid M, Jabbar S, Wang P, Zeng X, Wu T (2015) Stabilizing oil-in-water emulsion with amorphous celulose. Food Hydrocoll 43:275–282

    Article  CAS  Google Scholar 

  • Kalashnikova I, Bizot H, Cathala B, Capron I (2012) Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromolecules 13:267–275

    Article  CAS  Google Scholar 

  • Koehler DE, Lewis LN (1979) Effect of ethylene on plasma membrane density in kidney bean abscission zones. Plant Physiol 63:677–679

    Article  CAS  Google Scholar 

  • Liu H, Fu S, Zhu JY, Zhan HL (2009) Visualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microbial Technol 45:274–281

    Article  CAS  Google Scholar 

  • Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286:11195–11201

    Article  CAS  Google Scholar 

  • Madivala B, Vandebril S, Fransaer J, Vermant J (2009) Exploiting particle shape in solid stabilized emulsions. Soft Matter 5:1717–1727

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  • Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20:1849–1852

    Article  CAS  Google Scholar 

  • Ogeda TL, Silva IB, Fidale LC, El Seoud OA, Petri DFS (2012) Effect of cellulose physical characteristics, especially the wáter sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase. J Biotechnol 157:246–252

    Article  CAS  Google Scholar 

  • Palik ED (1985) Handbook of optical constants of solids. Academic Press, London

    Google Scholar 

  • Patrício PS, Pereira FV, dos Santos MC, de Souza PP, Roa JPB, Orefice RL (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: effect of celulose nanowhiskers on mechanical and therma properties. J Appl Polymer Sci 127:3613–3621

    Article  Google Scholar 

  • Pirich CL, Freitas RA, Woehl GF, Picheth GF, Petri DFS, Sierakowski MR (2015) Bacterial cellulose nanocrystals: impact of the sulfate content on the interaction with xyloglucan. Cellulose 22:1773–1787

    Article  CAS  Google Scholar 

  • Rein DM, Khalfin R, Cohen Y (2012) Cellulose as a novel amphiphilic coating for oil-in-water and water-in-oil dispersions. J Colloid Interface Sci 386:456–463

    Article  CAS  Google Scholar 

  • Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19:383–396

    Article  CAS  Google Scholar 

  • Santa-Maria M, Jeoh T (2010) Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis. Biomacromolecules 11:2000–2007

    Article  CAS  Google Scholar 

  • Silva RA, Urzúa MD, Petri DFS, Dubin PL (2010) Protein adsorption onto polyelectrolyte layers: effects of protein hydrophobicity and charge anisotropy. Langmuir 26:14032–14038

    Article  CAS  Google Scholar 

  • Tébéka IRM, Silva AGL, Petri DFS (2009) Hydrolytic activity of free and immobilized cellulase. Langmuir 25:1582–1587

    Article  Google Scholar 

  • Van Nierop EA, Stijnman MA, Hilgenfeldt S (2005) Shape-induced capillary interactions of colloidal particles. Europhys Lett 72:671–677

    Article  Google Scholar 

  • Wang J, Quirk A, Lipkowski J, Dutcher JR, Hill C, Mark A, Clarke AJ (2012) Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei. Langmuir 28:9664–9672

    Article  CAS  Google Scholar 

  • Wen C, Yuan Q, Liang H, Vriesekoop F (2014) Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals. Carbohydr Polym 112:695–700

    Article  CAS  Google Scholar 

  • Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–449

    CAS  Google Scholar 

  • Yuan X, Shen N, Wei X (1999) Immobilization of cellulase using acrylamide grafted acrylonitrile copolymer membranes. J Membr Sci 155:101–106

    Article  CAS  Google Scholar 

  • Yui T, Ogawa K (2005) X-ray diffraction study of polysaccharides. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Dekker, New York, pp 99–122

    Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Funding agencies FAPESP (Grant 2010/51219-4 and 2013/03480-3), CNPq (Grants, 305178/2013-0, 306245/2014-0 and 448497/2014-0), FINEP (Grant 01.13.0396.00) and Rede Nanobiotec CAPES.O.J.R. is grateful for partial funding support by the Academy of Finland through its Centers of Excellence Program (2014–2019), under project “Molecular Engineering of Biosynthetic Hybrid Materials Research” (HYBER). Dr. TiinaE. Nypelö is acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise F. S. Petri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingues, A.A., Pereira, F.V., Sierakowski, M.R. et al. Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose. Cellulose 23, 2421–2437 (2016). https://doi.org/10.1007/s10570-016-0965-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0965-3

Keywords

Navigation