Skip to main content
Log in

Paper preservation with polyamidoamines: a preliminary study

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This research deals with the use of water soluble polyamidoamines (PAAOH’s) as innovative paper preservatives endowed with deacidification and biostatic properties. They were obtained by reaction of N,N-methylenbisacrylamide (MBA) with ethanolamine (EA) and were characterized by Fourier Transform Infrared Spectroscopy analysis (FTIR), Electrospray Mass Spectrometry (ESI-MS) and Nuclear Magnetic Resonance (NMR). PAAOH’s should tightly bind to cellulose through a network of H-bonds, as suggested by molecular mechanics calculations. Actually, FTIR analysis and the increment in anhydrous mass of paper samples demonstrated that PAAOH’s were progressively absorbed by paper cellulose without altering the original color of paper as observed by colorimetric analysis. The deacidifying effects were confirmed by significant increment in pH values of paper after treatment in comparison to the untreated paper samples. In vitro antibiogram assay showed a good but variable biostatic effect on different fungal test strains, depending by species, PAAOH’s concentration and pH in the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ball P (2002) Nanotechnologies for Conservation of Cultural Heritage: Paper and Canvas Deacidification. Nature News [Online], Oct 22. doi:10.1038/news021021-1. Accessed 19 Nov 2010

  • Ballini R (2009) Eco-Friendly Synthesis of Fine Chemicals, Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK

  • Banik G, Sobotka WK (1988) In: P. Luner (Eds). Paper preservation, current issue and recent developments. Tappi Press, Atlanta p 137

  • Bicchieri M, Brusa P (1997) The bleaching of paper by reduction with the borane terzbutylamine complex. Restaurator 18:1–11

    CAS  Google Scholar 

  • Bicchieri M, Bella M, Semetilli F (1999) A quantitative measure of borane terzbutylamine complex effectiveness in carbonyl reduction of aged papers. Restaurator 20:22–29

    CAS  Google Scholar 

  • Bicchieri M, Semetilli F, Sodo A (2000) Application of seven borane complexes in paper conservation. Restaurator 21:213–228

    CAS  Google Scholar 

  • Bicchieri M, Monti M, Piantanida G, Pinzari F, Iannuccelli S, Sotgiu S, Tireni L (2011) The Indian drawings of the poet Cesare Pascarella: non-destructive analyses and conservation treatments. Anal Bioanal Chem 402:1517–1528

    Article  Google Scholar 

  • Blüher A, Vogelsanger B (2001) Mass deacidification of paper. Chimia 55:981–989

    Google Scholar 

  • Cauzzi D, Stercoli A, Predieri G (2008) Hybrid siloxane-polyaminoamides for the absorption of heparin from blood. In: Innocenzi P, Zub YL, Kessler VG (eds) Sol-gel methods for materials processing. Springer, Kiev, pp 277–282

    Chapter  Google Scholar 

  • Clark RJH, Jibbs PJ, Jarjis RA (1998) An investigation into the deacidification of paper by ethoxymagnesium ethylcarbonate. J Mater Chem 8:2685–2690

    Article  CAS  Google Scholar 

  • Dupont AL, Lavédrine B, Cheradame H (2010) Mass deacidification and reinforcement of papers and books VI- Study of aminopropylmethyldiethoxysilane treated papers. Polym Degrad Stabil 95:2300–2308

    Article  CAS  Google Scholar 

  • Enders D, Wang C, Liebich JX (2009) Organocatalytic asymmetric Aza-Michael additions. Chem Eur J 15:11058–11076

    Article  CAS  Google Scholar 

  • Erhardt D, Mecklenburg MF (1995) Accelerated vs natural aging: Effect of aging conditions on the aging process of cellulose. Materials Issues in Art and Archaeology IV, Materials Research Society Symposium Proceedings 352:247–270

  • Erhardt D, Tumosa CS, Mecklenburg MF (1999) Material consequence of the aging of paper. In: 12th Triennal Meeting Lyon (29 Aug–3 Sept), vol II, pp 501–506

  • Erhardt D, Tumosa Charles S, Mecklenburg Marion F (2000) Chemical and physical changes in naturally and accelerated aged cellulose. In: Historic Textiles, Paper and Polymer in Museums, Chapter 3. American Chemical Society, pp 23–37

  • Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Dev Ther 6:427–436

    CAS  Google Scholar 

  • Ferruti P (2013) Poly(amidoamine)s: past, present, and perspectives. J Polym Sci Pol Chem 51:2319–2353

    Article  CAS  Google Scholar 

  • Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Progr Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  Google Scholar 

  • Giorgi R, Dei L, Ceccato M, Schettino CV, Baglioni P (2002) Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir 18:8198–8203

    Article  CAS  Google Scholar 

  • Giorgi R, Bozzi C, Dei L, Gabbiani C, Ninham BW, Baglioni P (2005a) Nanoparticles of Mg(OH)2: synthesis and application to paper conservation. Langmuir 21:8495–8501

    Article  CAS  Google Scholar 

  • Giorgi R, Chelazzi D, Baglioni P (2005b) Nanoparticles of calcium hydroxide for wood conservation. The deacidification of the Vasa warship. Langmuir 21:10743–10748

    Article  CAS  Google Scholar 

  • Halgren TA (1996) MMFF94 Merck molecular force field. J Computational Chem 17(5–6):520–552

    Article  CAS  Google Scholar 

  • Holden CH, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H (2012) Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomed Nanotechnol Biol Med 8:776–783

    Article  CAS  Google Scholar 

  • Holmes J (1988) Mass deacidification of books at the National Archives and the National Library of Canada. In: Luner P (ed) Paper preservation current issues and recent developments. Tappi Press, Atlanta, p 144

    Google Scholar 

  • Huhsmann E, Hänner U (2008) Work standard for the treatment of 18th and 19th century iron gall ink documents with calcium phytate and calcium hydrogen carbonate. Restaurator 29:264–318

    Google Scholar 

  • Kenaway El-Refaie, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state of the art review. Biomacromolecules 8(5):1359–1384

    Article  Google Scholar 

  • Kolar J, Strlič M, Budnar M, Malešič J, Šelih VS, Simčič J (2003) Stabilisation of corrosive iron gall inks. Acta Chim Slov 50:763–770

    CAS  Google Scholar 

  • Kolar J, Sala M, Strlič M, Šelih VS (2005) Stabilisation of paper containing iron-gall ink with current aqueous processes. Restaurator 26:181–189

    CAS  Google Scholar 

  • Kozak JJ, Spartz RE (1988) Deacidification of paper by Bookkeeper process. In: Luner P (ed) Paper preservation, current issues and recent developments. Tappi Press, Atlanta, p 129

    Google Scholar 

  • Liers J, Schwerdt P (1995) The battelle mass deacidification process equipment and technology. Restaurator 16(1):1–9

    CAS  Google Scholar 

  • Liers J, Vogelsanger B (1997) Das Massenentsäuerungsverfahren der Deutschen bibliothek. Das Papier 51:118–126

    CAS  Google Scholar 

  • Margutti S, Conio G, Calvini P, Pedemonte E (2001) Hydrolitic and oxidative degradation of paper. Restaurator 22(2):67–83

    CAS  Google Scholar 

  • Mather BD, Viswanathan K, Miller KM, Long TE (2006) Michael addition reactions in macromolecular design for emerging technologies. Progr Polym Sci 31:487–531

    Article  CAS  Google Scholar 

  • Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC (2015) The extreme environment of a library: xerophilic fungi inhabiting indoor niches. Int Biodeterior Biodegrad 99:1–7

    Article  Google Scholar 

  • Montanari M, Iotti M, Innocenti G (2009) Isolamento, identificazione e attività cellulosolitica di funghi associati al degrado di un dipinto su tela del XIX esimo secolo. Micologia Italiana 3:19–24

    Google Scholar 

  • Palanti S, Predieri G, Feci E, Bergamonti L (2015) Polyamidoamines (PAA) with siloxane fragments as potential wood preservatives. IRG/WP 15-40708, Proceedings IRG Annual Meeting (ISSN 2000-8953)

  • Percot A, Zhu XX, Lafleur M (2000) A simple FTIR spectroscopic method for the determination of the lower critical solution temperature of N-isopropylacrylamide copolymers and related hydrogels. J Polym Sci Pol Phys 38:907–915

    Article  CAS  Google Scholar 

  • Pinzari F, Fanelli C, Canhoto O, Magan N (2004) Electronic nose for the early detection of moulds in libraries and archives. Indoor and Built Environ 13(5):387–395

    Article  Google Scholar 

  • Pinzari F, Pasquariello G, De Mico A (2006) Biodeterioration of paper: a SEM study of fungal spoilage reproduced under controlled conditions. Macromol Symp 238:57–66

    Article  CAS  Google Scholar 

  • Piovesan C, Dupont AL, Fabre-Francke I, Fichet O, Lavédrine B, Chéradame H (2014) Strengthening by polyaminoalkylalkoxysilane copolymer networks applied by spray or immersion: a model study. Cellulose 21:705–715

    Article  CAS  Google Scholar 

  • Poggi G, Giorgi R, Toccafondi N, Katzur V, Baglioni P (2010) Hydroxide nanoparticles for deacidification and concomitant Inhibition of iron-gall ink corrosion paper. Langmuir 26(24):19084–19090

    Article  CAS  Google Scholar 

  • Poggi G, Toccafondi N, Melita LN, Knowles JC, Bozec L, Giorgi R, Baglioni P (2014) Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulation for the deacidification of cellulose-based artifacts. Appl Phys A 114:685–693

    Article  CAS  Google Scholar 

  • Potthast A, Henniges U, Banik G (2008) Iron gall ink-induced corrosion of cellulose: aging, degradation and stabilization. Part 1: model paper studies. Cellulose 15(6):849–859

    Article  CAS  Google Scholar 

  • Rautela GS, Cowling EB (1966) Simple cultural test for relative cellulolytic activity of fungi. Appl Microbiol 14:892–898

    CAS  Google Scholar 

  • Sautour M, Dantigny P, Divies C, Bensoussan M (2001) A temperature-type model for describing the relationship between fungal growth and water activity. Int J Food Microbiol 67:63–69

    Article  CAS  Google Scholar 

  • Sequeira S, Casanova C, Cabrita EJ (2006) Deacidification paper using dispersion of Ca(OH)2 nanoparticles in isopropanol. Study of efficiency. J Cultural Heritage 7:264–272

    Article  Google Scholar 

  • Smith RD (1987) Mass deacidification at the public archives of Canada. In: Conservation of Library and Archive Materials and the Graphic Arts. Butterworths, London, p 125

  • Smith AW (2011) Aqueous deacidification of paper. In: Banik G, Brückle I (eds) Paper and water, a guide for conservators. Taylor & Francis, Milton Park, pp 341–388

    Google Scholar 

  • Strlič M, Kolar J, Zigon M, Pihlar B (1998) Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. J Chromatogr A 805:93–99

    Article  Google Scholar 

  • Tansey MR (1971) Agar diffusion assay of cellulolytic ability of thermophilc fungi. Arch Microbiol 77:1–11

    CAS  Google Scholar 

  • Walseth CS (1952) The influence of the fine structure of cellulose on the action of cellulases. Tappi 35:233–238

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Whitmore PM (2011) Paper ageing and the influence of water. In: Banik G, Brückle I (eds) Paper and water, a guide for conservators. Taylor & Francis, Milton Park, pp 219–253

    Google Scholar 

  • Yoon JH, Park JE, Suh DY, Hong SB, Ko SJ, Kim SH (2007) Comparison of dyes for easy detection of extracellular cellulases in fungi. Mycobiology 35(1):21–24

    Article  Google Scholar 

  • Zumbühl S, Wülfert S (1994) An evaluation of the Bookkeeper mass deacidification process. Technical evaluation team report for the preservation directorate, library of congress, Washington, D.C., Ed. S.M. Melinick, Pittsburgh, PA

  • Zumbühl S, Wülfert S (2001) Chemical aspects of the BookKeeper deacidification of cellulosic materials: the influence of surfactants. Stud Conserv 16:169–180

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to Miss Margherita Donnici for experimental work during her graduation thesis, to Dr. Marco Milioli (Ph.D.) for the acquisition of the MS spectra and to Dr. Laura Bergamonti (Ph.D.) for helpful discussions about PAAOH’s synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clelia Isca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isca, C., D’Avorgna, S., Graiff, C. et al. Paper preservation with polyamidoamines: a preliminary study. Cellulose 23, 1415–1432 (2016). https://doi.org/10.1007/s10570-016-0880-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0880-7

Keywords

Navigation