Skip to main content
Log in

Cellulose-based nanostructures for photoresponsive surfaces

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose is the main constituent of plant cell walls and can be converted into a wide range of derivatives. The derivatives are produced by a chemical reaction of the primary and two secondary hydroxyl groups available in β-d-glucopyranose units, often in heterogeneous conditions, yielding, in many cases, <3 average degrees of substitution per glucose unit. Here we profit from the richness of these systems and different assembly conditions building up from similar nanomicelles, with a characteristic length of ca. 30 nm, different nanostructures: lamellas and filaments that show dissimilar responses to UV irradiation. The chosen cellulose derivative was a thermotropic liquid crystal synthesized by the reaction of 4-(4-methoxyazobenzene-4′-yloxy)butanoyl chloride and acetoxypropylcellulose. The nanostructures were obtained from this cellulose derivative by using spin-coating as well as Langmuir–Blodgett techniques. The nanostructures with a high surface-to-volume ratio, which can be freestanding or grown off a substrate, lead to organic tunable interfacial templates with distinct wettability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbood HA, Ahmed KAM, Ren Y, Huang K (2012) MnV2O6·V2O5 cross-like nanobelt arrays: synthesis, characterization and photocatalytic properties. Appl Phys A Mater 112(4):901–909. doi:10.1007/s00339-012-7444-y

    Article  CAS  Google Scholar 

  • Adden R, Niedner W, Müller R, Mischnick P (2006) Comprehensive analysis of the substituent distribution in the glucosyl units and along the polymer chain of hydroxyethylmethyl celluloses and statistical evaluation. Anal Chem 78(4):1146–1157. doi:10.1021/ac051484q

    Article  CAS  Google Scholar 

  • Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TC, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 98(21):11857–11862. doi:10.1073/pnas.191250198

    Article  CAS  Google Scholar 

  • Ahir SV, Huang YY, Terentjev EM (2008) Polymers with aligned carbon nanotubes: active composite materials. Polymer 49(18):3841–3854. doi:10.1016/j.polymer.2008.05.005

    Article  CAS  Google Scholar 

  • Armarego WLF, Chai CLL (2009) Purification of laboratory chemicals, 6th edn. Elsevier, Burlington

    Google Scholar 

  • Aschenbrenner E, Bley K, Koynov K, Makowski M, Kappl M, Landfester K, Weiss CK (2013) Using the polymeric ouzo effect for the preparation of polysaccharide-based nanoparticles. Langmuir 29(28):8845–8855. doi:10.1021/la4017867

    Article  CAS  Google Scholar 

  • Atalla RS, Crowley MF, Himmel ME, Atalla RH (2014) Irreversible transformation of native celluloses, upon exposure to elevated temperatures. Carbohydr Polym 100:2–8. doi:10.1016/j.carbpol.2013.06.007

    Article  CAS  Google Scholar 

  • Geissler A, Biesalski M, Heinze T, Zhang K (2014) Formation of nanostructured cellulose stearoyl esters via nanoprecipitation. J Mater Chem A 2(4):1107. doi:10.1039/c3ta13937a

    Article  CAS  Google Scholar 

  • Glasser W, Atalla R, Blackwell J, Malcolm Brown R Jr, Burchard W, French A, Klemm D, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598. doi:10.1007/s10570-012-9691-7

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hearle JWS (1958) A fringed fibril theory of structure in crystalline polymers. J Polym Sci 28(117):432–435. doi:10.1002/pol.1958.1202811722

    Article  CAS  Google Scholar 

  • Ho FF-L, Kohler RR, Ward GA (1972) Determination of molar substitution and degree of substitution of hydroxypropyl cellulose by nuclear magnetic resonance spectrometry. Anal Chem 44(1):178–181

    Article  Google Scholar 

  • Hu T, Xie H, Xiao J, Zhang H, Chen E (2010) Design, synthesis, and characterization of a combined main-chain/side-chain liquid-crystalline polymer based on ethyl cellulose. Cellulose 17(3):547–558. doi:10.1007/s10570-009-9392-z

    Article  CAS  Google Scholar 

  • Huang YY, Knowles TPJ, Terentjev EM (2009) Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv Mater 21(38–39):3945–3948. doi:10.1002/adma.200900498

    Article  CAS  Google Scholar 

  • Huang Y, Kang H, Li G, Wang C, Huang Y, Liu R (2013) Synthesis and photosensitivity of azobenzene functionalized hydroxypropylcellulose. RSC Adv 3(36):15909. doi:10.1039/c3ra43031f

    Article  CAS  Google Scholar 

  • Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:2. doi:10.1038/426611a

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Kondo T (2005) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 69–98

    Google Scholar 

  • Kono H (2013) (1)H and (1)(3)C chemical shift assignment of the monomers that comprise carboxymethyl cellulose. Carbohydr Polym 97(2):384–390. doi:10.1016/j.carbpol.2013.05.031

    Article  CAS  Google Scholar 

  • Lagerwall JPF, Schütz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80. doi:10.1038/am.2013.69

    Article  CAS  Google Scholar 

  • Liebert T, Hornig S, Hesse S, Heinze T (2005) Microscopic visualization of nanostructures of cellulose derivatives. Macromol Symp 223(1):253–266. doi:10.1002/masy.200550518

    Article  CAS  Google Scholar 

  • Mann G, Kunze J, Loth F, Fink H-P (1998) Cellulose ethers with a block-like distribution of the substituents by structure-selective derivatization of cellulose. Polymer 39(14):3155–3165. doi:10.1016/S0032-3861(97)10006-4

    Article  CAS  Google Scholar 

  • Medronho B, Romano A, Miguel M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587. doi:10.1007/s10570-011-9644-6

    Article  CAS  Google Scholar 

  • Mischnick P (2001) Challenges in structure analysis of polysaccharide derivatives. Cellulose 8(4):245–257. doi:10.1023/A:1015116419080

    Article  CAS  Google Scholar 

  • Momcilovic D, Schagerlöf H, Wittgren B, Wahlund K-G, Brinkmalm G (2005) Improved chemical analysis of cellulose ethers using dialkylamine derivatization and mass spectrometry. Biomacromolecules 6(5):2793–2799. doi:10.1021/bm050270f

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4(4):1013–1017. doi:10.1021/bm025772x

    Article  CAS  Google Scholar 

  • Östmark E, Lindqvist J, Nyström D, Malmström E (2007) Dendronized hydroxypropyl cellulose: synthesis and characterization of biobased nanoobjects. Biomacromolecules 8(12):3815–3822. doi:10.1021/bm7007394

    Article  CAS  Google Scholar 

  • Pinto LFV, Kundu S, Brogueira P, Cruz C, Fernandes SN, Aluculesei A, Godinho MH (2011) Cellulose-based liquid crystalline photoresponsive films with tunable surface wettability. Langmuir 27(10):6330–6337. doi:10.1021/la200422q

    Article  CAS  Google Scholar 

  • Ranby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164. doi:10.1039/DF9511100158

    Article  Google Scholar 

  • Reuben J (1986) Analysis of the 13C-N.M.R. spectra of hydrolyzed and methanolyze O-methylcelluloses: monomer compositions and models for their description. Carbohydr Res 157:201–213. doi:10.1016/0008-6215(86)85069-8

    Article  CAS  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Richardson S, Andersson T, Brinkmalm G, Wittgren B (2003) Analytical approaches to improved characterization of substitution in hydroxypropyl cellulose. Anal Chem 75(22):6077–6083. doi:10.1021/ac0301604

    Article  CAS  Google Scholar 

  • Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253. doi:10.1021/bm301674e

    Article  CAS  Google Scholar 

  • Samuels RJ (1969) Solid-state characterization of the structure and deformation behavior of water-soluble hydroxypropylcellulose. J Polym Sci A2 7(5):1197–1258

    Article  CAS  Google Scholar 

  • Schulz L, Seger B, Burchard W (2000) Structures of cellulose in solution. Macromol Chem Phys 201(15):2008–2022. doi:10.1002/1521-3935(20001001)201:15<2008:AID-MACP2008>3.0.CO;2-H

    Article  CAS  Google Scholar 

  • Shao K, Liao S, Luo H, Wang M (2008) Self-assembly of polymer and molybdenum oxide into lamellar hybrid materials. J Colloid Interfaces Sci 320(2):445–451. doi:10.1016/j.jcis.2008.01.010

    Article  CAS  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, Maclachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425. doi:10.1038/nature09540

    Article  CAS  Google Scholar 

  • Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103(43):15806–15811. doi:10.1073/pnas.0604035103

    Article  CAS  Google Scholar 

  • Spurlin HM (1939) Arrangement of substituents in cellulose derivatives. J Am Chem Soc 61(8):2222–2227. doi:10.1021/ja01877a070

    Article  CAS  Google Scholar 

  • Tseng S-L, Valente A, Gray DG (1981) Cholesteric liquid crystalline phases based on (acetoxypropyl)cellulose. Macromolecules 14(3):715–719. doi:10.1021/ma50004a049

    Article  CAS  Google Scholar 

  • Xin B, Hao J (2010) Reversibly switchable wettability. Chem Soc Rev 39(2):769–782. doi:10.1039/b913622c

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Conrad Zhang Z, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68(2):235–241. doi:10.1016/j.carbpol.2006.12.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Portuguese Science and Technology Foundation (FCT) supported this research through contracts PTDC/CTM-POL/1484/2012, UID/CTM/500025/2013 and Project 441.00 INDIA. The NMR spectrometers are part of The National NMR Facility, supported by FCT through contract RECI/BBB-BQB/0230/2012. S.N. Fernandes and J.P. Canejo acknowledge FCT for grants SFRH/BPD/78430/2011 and SFRH/BPD/101041/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria H. Godinho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, S.N., Aguirre, L.E., Pontes, R.V. et al. Cellulose-based nanostructures for photoresponsive surfaces. Cellulose 23, 465–476 (2016). https://doi.org/10.1007/s10570-015-0815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0815-8

Keywords

Navigation