Skip to main content
Log in

The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The enzymatic hydrolysability of three industrial pulps, five lab made pulps, and one microcrystalline cellulose powder was assessed using commercial cellulolytic enzymes. To gain insight into the factors that influence the hydrolysability, a thorough characterization of the samples was done, including their chemical properties (cellulose content, hemicellulose content, lignin content, and kappa number), their macromolecular properties (peak molar mass, number-average molar mass, weight-average molar mass, polydispersity, and limiting viscosity) and their supramolecular properties (fibre saturation point, specific surface area, average pore size, and crystallinity). The hydrolysability was assessed by determination of initial conversion rate and final conversion yield, with conversion yield defined as the amount of glucose in solution per unit of glucose in the substrate. Multivariate data analysis revealed that for the investigated samples the conversion of cellulose to glucose was mainly dependent on the supramolecular properties, such as specific surface area and average pore size. The molar mass distribution, the crystallinity, and the lignin content of the pulps had no significant effect on the hydrolysability of the investigated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. PNAS 111:6287–6292

    Article  CAS  Google Scholar 

  • Andersen N (2007) Enzymatic hydrolysis of cellulose—experimental and modeling studies. Doctoral thesis, Biocetrum-DTU, Technical University of Denmark, Denmark

  • Arantes V, Gourlay K, Saddler JS (2014) The enzymatic hydrolysis of pretreated pulp fibers predominantly involves “peeling/erosion” modes of action. Biotechnol Biofuels 7:87

    Article  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulose kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848

    Article  CAS  Google Scholar 

  • Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209

    Article  CAS  Google Scholar 

  • Bezerra RMF, Dias AA (2004) Discrimination among eight modified Michaelis–Menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios. Appl Biochem Biotechnol 112:173–184

    Article  CAS  Google Scholar 

  • Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:186–1102

    Article  Google Scholar 

  • Cannella D, Hsieh C-W, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26

    Article  CAS  Google Scholar 

  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93

    CAS  Google Scholar 

  • Chauve M, Barre L, Tapin-Lingua S, da Silva PD, Decottignes D, Perez S, Lopes Ferreira N (2012) Evolution and impact of cellulose architecture during enzymatic hydrolysis by fungal cellulases. Adv Biosci Biotechnol 4:1095–1109

    Article  Google Scholar 

  • Converse AO, Ooshima H, Burns DS (1990) Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl Biochem Biotechnol 24(25):67–73

    Article  Google Scholar 

  • Drechsler U, Radosta S, Waltraud Vorwerg W (2000) Characterization of cellulose in solvent mixtures with N-methylmorpholine-N-oxide by static light scattering. Macromol Chem Phys 201:2023–2030

    Article  CAS  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997

    Article  Google Scholar 

  • Foston M, Hubbell CA, Samuel R, Jung S, Fan H, Ding SY, Zeng Y, Jawdy S, Davis M, Sykes R, Gjersing E, Tuskan GA, Kalluri U, Ragauskas AJ (2011) Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance. Energy Environ Sci 4:4962–4971

    Article  CAS  Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155–160

    Article  CAS  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126

    Article  CAS  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45

    Article  CAS  Google Scholar 

  • Ibbett R, Gaddipati S, Hill S, Tucker G (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestability. Biotechnol Biofuels 6:33

    Article  CAS  Google Scholar 

  • Ioelovich M, Morag E (2011) Effect of cellulose structure on enzymatic hydrolysis. BioResources 6:2818–2835

    CAS  Google Scholar 

  • Kihlman M, Aldaeus F, Chedid F, Germgård U (2011) Effect of various pulp properties on the solubility of cellulose in sodium hydroxide solutions. Holzforschung 66:601–606

    Google Scholar 

  • Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution patterns on adsorption characteristics. Biomacromolecules 12:2633–2641

    Article  Google Scholar 

  • Larsson PT, Svensson A, Wågberg L (2013) A new, robust method for measuring average fibre wall pore sizes in cellulose I rich plant fibre walls. Cellulose 20:623–631

    Article  CAS  Google Scholar 

  • Liu YS, Baker JO, Zeng Y, Himmel ME, Haas T, Ding SY (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286:11195–11201

    Article  CAS  Google Scholar 

  • Mansfield SD, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816

    Article  CAS  Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298:705–710

    Article  CAS  Google Scholar 

  • Ohmine K, Ooshima H, Harano Y (1983) Kinetic study on enzymatic hydrolysis of cellulose by cellulose from Trichoderma viride. Biotechnol Bioeng 15:2041–2053

    Article  Google Scholar 

  • Peciulyte A, Karlström K, Larsson PT, Olsson L (2015) Impact of the supramolecular structure of cellulose on the efficiency of enzymatic hydrolysis. Biotechnol Biofuels 8:56

    Article  Google Scholar 

  • Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssonen E, Bhatia A, Ward M, Penttila M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    Article  CAS  Google Scholar 

  • Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueenmason SJ, Shieh M, Cosgrove DJ (1995) molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci USA 92:9245–9249

    Article  CAS  Google Scholar 

  • Sin G, Meyer AS, Gernaey KV (2010) Assessing reliability of cellulose hydrolysis models to support biofuel process design—identifiability and uncertainty analysis. Comput Chem Eng 34:1385–1392

    Article  CAS  Google Scholar 

  • Sinitsyn AP, Gusakov AV, Vlasenko EY (1991) Effect of structural and physio-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 30:43–59

    Article  CAS  Google Scholar 

  • Stone JE, Scallan AM (1967) The effect of component removal upon the porous structure of the cell wall of wood II—swelling in water and the fibre saturation point. Tappi 50:496–501

    CAS  Google Scholar 

  • Strunk P, Eliasson B, Hägglund C, Agnemo R (2011) The influence of properties in cellulose pulps on the reactivity in viscose manufacturing. Nord Pulp Pap Res J 26:81–89

    Article  CAS  Google Scholar 

  • Taneda D, Ueno Y, Ikeo M, Okino S (2012) Characteristics of enzyme hydrolysis of cellulose under static conditions. Bioresour Technol 121:154–160

    Article  CAS  Google Scholar 

  • Wald S, Wilke CR, Blanch HW (1984) Kinetics of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 26:221–230

    Article  CAS  Google Scholar 

  • Wang W, Kang L, Wei H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164:1139–1149

    Article  CAS  Google Scholar 

  • Wang G, Post WP, Mayes MA, Frerichs JT, Sindhu J (2012) Parameter estimation for models of lignolytic enzyme kinetics. Soil Biol Biochem 48:28–38

    Article  Google Scholar 

  • Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450

    Article  CAS  Google Scholar 

  • Ye Z, Berson RE (2011) Kinetic modeling of cellulose hydrolysis with first order inactivation of adsorbed cellulase. Bioresour Technol 102:11194–11199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ann Olsson (Innventia AB) for determination of the carbohydrate composition and lignin content. This work was funded by the Swedish Research Council (VR) under the scheme for strategic energy research (No. 621-2010-3788), by the Chalmers Energy Initiative, and by RISE Research Institutes of Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Aldaeus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldaeus, F., Larsson, K., Srndovic, J.S. et al. The supramolecular structure of cellulose-rich wood pulps can be a determinative factor for enzymatic hydrolysability. Cellulose 22, 3991–4002 (2015). https://doi.org/10.1007/s10570-015-0766-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0766-0

Keywords

Navigation